Skip to main content
Log in

Relationship between the Discrete and Resonance Spectrum for the Laplace Operator on a Noncompact Hyperbolic Riemann Surface

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We consider arbitrary noncompact hyperbolic Riemann surfaces of finite area. For such surfaces, we obtain identities relating the discrete spectrum of the Laplace operator to the resonance spectrum (formed by the poles of the scattering matrix). These identities depend on the choice of a test function. We indicate a class of admissible test functions and consider two examples corresponding to specific choices of the test function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Venkov, “Spectral theory of automorphic functions,” Trudy Mat. Inst. Steklov, 153 (1981), 3–171; English transl.: Proc. Steklov Inst. Math., 153 (1982), 1–163.

    MathSciNet  MATH  Google Scholar 

  2. P. Sarnak, “Spectra of hyperbolic surfaces,” Bull. Amer. Math. Soc., 40:2003 (2003), 441–478.

    Article  MathSciNet  Google Scholar 

  3. A. Selberg, Harmonic Analysis, Teil 2, Vorlesungniederschrift, Göttingen, 1954.

  4. A. B. Venkov, “On essentially cuspidal noncongruence subgroups of PSL(2,ℤ),” J. Funct. Analys., 92:1990 (1990), 1–7.

    Article  MathSciNet  Google Scholar 

  5. J. M. Deshouillers, H. Iwaniec, R. S. Phillips, and P. Sarnak, “Maass cusp forms,” Proc. Nat. Acad. Sci. USA, 82:1985 (1985), 3533–3534.

    Article  MathSciNet  Google Scholar 

  6. R. S. Phillips and P. Sarnak, “On cusp forms for co-finite subgroups of PSL(2, ℝ),” Invent. Math., 80:1985 (1985), 339–364.

    Article  MathSciNet  Google Scholar 

  7. S. A. Wolpert, “Spectral limits for hyperbolic surfaces I, II,” Invent. Math., 108:1992 (1992), 67–89, 91–129.

    Article  MathSciNet  Google Scholar 

  8. S. A. Wolpert, “Disappearance of cups forms in special families,” Ann. Math., 139:1994 (1994), 239–291.

    Article  MathSciNet  Google Scholar 

  9. W. Luo, “Nonvanishing of L-values and the Weil law,” Ann. Math., 154:2001 (2001), 477–502.

    Article  MathSciNet  Google Scholar 

  10. D. A. Popov, “On the Selberg trace formula for strictly hyperbolic groups,” Funkts. Anal. Prilozhen., 47:2013 (2013), 53–66; English transl.: Functional Anal. Appl., 47:4 (2013), 290–301.

    Article  Google Scholar 

  11. D. A. Popov, Selberg formula for cofinite groups and the Roelke conjecture, https://arxiv.org/abs/1705.05612v4.

  12. A. B. Venkov, “Remainder term in the Weyl-Selberg asymptotic formula,” Zap. Nauchn. Sem. LOMI, 91 (1979), 5–24; English transl.: J. Soviet Math., 17:5 (1981), 2083–2097.

    MathSciNet  MATH  Google Scholar 

  13. A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics,” Uspekhi Mat. Nauk, 34:1979 (1979), 69–135; English transl.: Russian Math. Surveys, 34:3 (1979), 79–153.

    MathSciNet  MATH  Google Scholar 

  14. D. A. Hejhal, “The Selberg trace formula and the Riemann zeta function,” Duke Math. J., 43:1976 (1976), 441–482.

    Article  MathSciNet  Google Scholar 

  15. D. A. Hejhal, The Selberg Trace Formula for PSL(2, ℝ), vol. 1, Lect. Notes in Math., vol. 548, Springer-Verlag, Berlin-New York, 1976.

    Book  Google Scholar 

  16. D. A. Hejhal, The Selberg Trace Formula for PSL(2, ℝ), vol. 2, Lect. Notes in Math., vol. 1001, Springer-Verlag, Berlin, 1983.

    Book  Google Scholar 

  17. H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Revista Matematica Iberoamericana, Madrid, 1995.

  18. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York-London, 1965.

    Google Scholar 

  19. H. Bateman and A. Erdályi, Higher Transcendental Functions, vol. 2, McGraw-Hill, New York-Toronto-London, 1953.

    Google Scholar 

  20. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D.C., 1964.

    MATH  Google Scholar 

  21. D. A. Popov, “Discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi function,” Izv. Ross. Akad. Nauk Ser. Mat., 83:5 (2019).

    Google Scholar 

  22. W. Abikoff, The real analytic theory of Teichmüller space, Lect. Notes in Math., vol. 820, Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Popov.

Additional information

Russian Text © The Author (s), 2019. Published in Funktsional’ nyi Analiz i Ego Prilozheniya, 2019, Vol. 53, No. 3, pp.61–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, D.A. Relationship between the Discrete and Resonance Spectrum for the Laplace Operator on a Noncompact Hyperbolic Riemann Surface. Funct Anal Its Appl 53, 205–219 (2019). https://doi.org/10.1134/S0016266319030055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266319030055

Key words

Navigation