Skip to main content
Log in

Retrospective of the Space Debris Problem. Part 1. Technogenic Clogging of Space and Means of Its Control

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A review of the latest journal and book publications on the problems of technogenic clogging of near-Earth space and methods for solving them is carried out. Based on the results of publications, we analyze international standards, present space debris classification, analyze the main sources of space debris formation and methods for clearing debris from space, estimate the evolution of technogenic clogging of low-Earth orbits, and the implementation of the process of removing space debris. The papers for modeling space technology systems designed for recording and evaluating fluxes of space debris in spacecraft orbits are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kosmicheskii musor (Space Debris), vol. 1: Metody nablyudeniya i modeli kosmicheskogo musora (Observation Methods and Space Debris Models), vol. 2: Preduprezhdenie obrazovaniya kosmicheskogo musora (Warning of Space Debris Formation), Raikunov, G.G., ed., Moscow: Fizmatlit, 2014.

  2. Monitoring tekhnogennogo zasoreniya okolozemnogo prostranstva i preduprezhdenie ob opasnykh situatsiyakh, sozdavaemykh kosmicheskim musorom (Monitoring of Man-Made Space Debris Accumulation and Warning of Hazards Caused by Space Debris), Makarov, Yu.N., Ed., Moscow: TsNIImash, 2015.

  3. IADC Space Debris Mitigation Guidelines, Inter-Agency Space Debris Coordination Committee. https:// www.iadc-home.org/documents_public/file_down/id/ 4095

  4. Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space, UN General Assembly Resolution A/RES/62/217 of January 10, 2008.

  5. GOST R 52925-2008. Space technology items. General requirements for mitigation of near-Earth space debris population, Moscow: Standartinform, 2008.

  6. Veniaminov, S.S. and Chervonov, A.M., Kosmicheskii musor—ugroza chelovechestvu (Space Debris—a Threat to Mankind), Moscow: IKI RAN, 2012.

  7. Technical Report on Space Debris, Scientific and Technical Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space, 1999. https://www. iadc-home.org/documents_public/file_down/id/4154

  8. Gorlov, A.E., Loginov, S.S., Mikhailov, M.A., et al., Topical issues of the international standardization in terms of man-made debris in the near-Earth space, Kosmonavt. Raketostr., 2015, no. 5, pp. 101–106.

  9. Nazarenko, A.I., Modelirovanie kosmicheskogo musora (Space Debris Modeling), Moscow: IKI RAN, 2013.

  10. Orbital Debris Quarterly News. http://orbitaldebris.jsc. nasa.gov/newsletter/newsletter.html

  11. Mironov, V.V., Murtazov, A.K., and Usovik, I.V., Sistemnye metody monitoringa okolozemnogo kosmicheskogo prostranstva (System Methods for Monitoring the Near-Earth Space), Ryazan: Book Jet, 2018.

  12. Handbook for Limiting Orbital Debris. http://www.hq. nasa.gov/office/codeq/doctree/NHBK871914.pdf

  13. History of On-Orbit Satellite Fragmentations, 14th Edition. http://orbitaldebris.jsc.nasa.gov/library/SatelliteFragHistory/TM-2008-214779.pdf

  14. Starkov, A.V., Spacecraft control algorithms taking into account the safety of dynamic operations, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Aviation Institute (National Research University), 2012.

  15. Sentinel-1A collision, Information notice. http:// www.esa.int.

  16. Smirnov, N.N., Space debris evolution in the near-Earth space, Usp. Mech., 2002, vol. 1, no. 2, pp. 13–104.

    ADS  Google Scholar 

  17. Nazarenko, A.I., Zadachi stokhasticheskoi kosmodinamiki. Matematicheskie metody i algoritmy resheniya (Problems of Stochastic and Space Dynamics. Mathematical Methods and Solution Algorithms), Moscow: Lenand, 2018.

  18. Lebedev, A.A., Vvedenie v analiz i sintez sistem: ucheb. posobie (Introduction to System Analysis and Synthesis: A Teaching Book), Moscow: MAI, 2001.

  19. Mironov, V.V. and Murtazov, A.K., Model of meteoroid risk in near-Earth space, Cosmic Res., 2015, vol. 53, no. 6, pp. 430–436.

    Article  ADS  Google Scholar 

  20. Lemmens, S. and Flohrer, T., Review of global achievements in clearing LEO and GEO protected zones, 33nd IADC Meeting, Houston, USA, 2015.

  21. Dolado Perez, J. C., Analysis of mitigation guidelines compliance at international level in low Earth orbit, 65th International Astronautical Congress, 2014, IA-C‑14,A6,4,4,x21608.

  22. Kessler, D.J. and Cour-Palais, B.G., Collision frequency of artificial satellites: The creation of debris belt, J. Geophys. Res., 1978, vol. 83, no. A6, pp. 2637–2646.

    Article  ADS  Google Scholar 

  23. Kessler, D.J., Collisional cascading the limits of population growth in low Earth orbit, Adv. Space Res., 1991, vol. 11, no. 12, pp. 63–66.

    Article  ADS  Google Scholar 

  24. Nazarenko, A.I., A 200-year forecast of space debris accumulation and the Kessler syndrome. http://satmotion.ru/engine/documents/document85.pdf

  25. Nazarenko, A.I., Space debris status for 200 years ahead and the Kessler effect, 29th IADC Meeting, Berlin, 2011.

  26. IADC Report AI 27.1. Stability of the Future LEO Environment. https://www.iadc-home.org/documents_ public/file_down/id/4134

  27. Liou, J.-C., An active debris removal parametric study for LEO environment remediation, Prog. Propulsion Phys., 2013, vol. 4, pp. 735–748.

    Article  Google Scholar 

  28. Liou, J.-C. and Johnson, N.L., A sensitivity study of the effectiveness of active debris removal in LEO, Adv. Space Res., 2011, no. 47, pp. 1865–1876.

  29. Phipps, C.R., ORION: Clearing near-Earth space debris using a 20-kW, 530 nm, Earth-based, repetitively pulsed laser, Laser Particle Beams, 1996, vol. 14, no. 1, pp. 1–44.

    Article  Google Scholar 

  30. Mironov, V.V. and Mukhin, A.V., Technique for evaluating the density of space debris by small sample, Tr. Inst. Sist. Anal. Ross. Akad. Nauk: Din. Neodnorodnykh Sist., 2008, vol. 32, no. 2, pp. 234–237.

    Google Scholar 

  31. Mironov, V.V., Sensors and control and diagnostic systems for the impact of space debris on space vehicles, Datchiki Sist., 2014., no. 9, pp. 2–9.

  32. Action item 31.5. Benefits of active debris removal in LEO in light of the investigation of uncertainties contributing to long-term environment modeling zones, 34th IADC Meeting, Beijing, China, 2014.

  33. Usovik, I.V., Malyshev, V.V., and Darnopykh, V.V., Technique for assessing the evolution of man-made accumulation of low-Earth orbits taking into account the mutual collisions and active removal of space debris, Vestn. Mosk. Aviats. Inst., 2015, vol. 22, no. 3, pp. 54–62.

    Google Scholar 

  34. Usovik, I.V., Analysis of flow characteristics of space debris in low-Earth orbits using a refined model, Kosmonavt.Raketostr., 2014, vol. 3, no. 76, pp. 97–102.

    Google Scholar 

  35. Gorlov, A.E. and Usovik, I.V., Impact of active removal of space debris on the long-term state of man-made space debris accumulation of low-Earth orbits, Kosmonavt.Raketostr., 2015, vol. 5, no. 84, pp. 101–106.

    Google Scholar 

  36. Usovik, I.V., Technique for assessing the evolution of man-made accumulation of low-Earth orbits using active removal of space debris, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Aviation Institute, 2015.

  37. Liou, J.-C., Hall, D.T., Krisko, P.H., and Opiela, J.N., LEGEND—A three-dimensional LEO-to-GEO debris evolutionary model, Adv. Space Res., 2004, vol. 34, no. 5, pp. 981–986.

    Article  ADS  Google Scholar 

  38. Klinkrad, H., Space Debris Models and Risk Analysis, Chihester, UK: Praxis, 2006.

    Google Scholar 

  39. Space Debris. Report of the ESA Space Debris Working Group, SP 1109, Paris, 1988.

  40. Pudovkin, O.L. and Pryakhina, E.B., Propagation of man-made bodies in the near-Earth space and evaluation of their impact on space vehicles, Kosm. Issled., 1994, vol. 32, no. 4, p. 76.

    Google Scholar 

  41. Mironov, V.V., Murtazov, A.K., and Usovik, I.V., Sistemnye metody monitoringa okolozemnogo kosmicheskogo prostranstva (System Methods for Monitoring the Near-Earth Space), Ryazan: Book Jet, 2017.

  42. Mironov, V.V. and Murtazov, A.K., Metody kontrolya blizhnego kosmosa (Control Methods for Near Space), Ryazan: Book Jet, 2017.

  43. Mironov, V.V., Obrabotka dannykh i garantirovannoe otsenivanie parametrov kosmicheskikh sistem (Data Processing and Guaranteed Estimation of Space System Parameters), Ryazan: Book Jet, 2018.

  44. Mironov, V.V. and Murtazov, A.K., Model of meteoroid risk in near-Earth space, Cosmic Res., 2015, vol. 53, no. 6, pp. 430–436.

  45. Mironov, V.V., A technique for estimating the space debris density from the data of onboard recording systems, Cosmic Res., 2003, vol. 41, no. 2, pp. 204–208.

    Article  ADS  Google Scholar 

  46. Mironov, V.V., A comparison of systems for recording space debris, Cosmic Res., 1996, vol. 34, no. 4, pp. 382–386.

    ADS  Google Scholar 

  47. Mironov, V.V., Obrabotka dannykh i garantirovannoe otsenivanie parametrov kosmicheskikh sistem (Data Processing and Guaranteed Estimation of Space System Parameters), Ryazan: Book Jet, 2018.

  48. Grudin, D.V., Matyushin, M.M., Panenko, V.S., and Tsaruk, A.V., Space debris avoidance maneuver for space vehicle Kanopus-V no. 1, Kosmonavt. Raketostr., 2018., no. 1, pp. 60–68.

  49. Mironov, V.V., A modified simplex-method for guaranteed parameter estimation. Program PR_GIP, no. 50200000020, Moscow: VNTITs, 2000.

  50. Mironov, V.V., Estimation of space debris density with recording systems by the rectangular contributions method. Program MPV, no. 50200000021, Moscow: VNTITs, 2000.

  51. Mironov, V.V., A direct simplex-method for guaranteed parameter estimation, Program PR_, no. 50200000022, Moscow: VNTITs, 2000.

  52. Mironov, V.V., Comparison of systems for recording and assessing the external impact of particles and fragments on space and flight vehicles, Program DTK_M5, no. 50200000025, Moscow: VNTITs, 2000.

  53. Gaskarov, D.V. and Shapovalov, V.I., Malaya vyborka (Small Sample), Moscow: Statistika, 1978.

  54. Eneev, T.M., On the issue of asteroid hazard, Komp’yuternye Instrum., 2003, no. 2, pp. 13–19.

  55. Zvereva, M.A., Naroenkov, S.A., Shustov, B.M., and Shugarov, A.S., Space system for detecting hazardous celestial bodies approaching earth from the daytime sky (SODA), Cosmic Res., 2018, vol. 56., no. 4, pp. 283–292.

    Article  ADS  Google Scholar 

  56. Shuvalov, V.A., Gorev, N.B., Tokmak, N.A., and Kochubei, G.S., Physical simulation of a prolonged plasma-plume exposure of a space debris object, Cosmic Res., 2018, vol. 56, no. 3, pp. 223–231.

    Article  ADS  Google Scholar 

  57. Baranov, A.A., Budyanskii, A.A., and Razumnyi, Yu.N., Controlling the motion of a spacecraft when approaching a large object of space debris, Cosmic Res., 2017, vol. 55, no. 4, pp. 270–274.

    Article  ADS  Google Scholar 

  58. Grudin, D.V., Matyushin, M.M., Panenko, V.S., and Tsaruk, A.V., Space debris avoidance maneuver for space vehicle Kanopus-V no. 1, Kosmonavt. Raketostr., 2018., no. 1, pp. 60–68.

  59. Bakhtigaraev, N.S., Levkina, P.A., Karpov, N.V., and Chazov, V.V., Observation of an unknown fragment of space debris in the Terskol observatory, Vestn. Sib. Gos. Aerokosm. Univ., 2011, vol. 39, no. 6, pp. 186–189.

    Google Scholar 

  60. Alby, F., Status of CNES optical observations of space debris in geostationary orbit, Adv. Space Res., 2004, vol. 34, pp. 1143–1149.

    Article  ADS  Google Scholar 

  61. Hanada, T., Theoretical and empirical analysis of the average cross-sectional areas of breakup fragments, Adv. Space Res., 2011, vol. 47, pp. 1480–1489.

    Article  ADS  Google Scholar 

  62. Hanada, T., Using breakup models and propagators to devise debris search strategies in GEO, Adv. Astronaut. Sci., 2002, vol. 110, pp. 373–385.

    Google Scholar 

  63. Kamensky, S. and Khutorovsky, Z., Determination of satellite origin: Ways to improve the catalog, Proc. of Second European Conf. on Space Debris, Darmstadt, 1997.

  64. Valk, S., Global dynamics of high area-to-mass ratios geo space debris by means of the MEGNO indicator, Adv. Space Res., 2009, vol. 43, pp. 1509–1526.

    Article  ADS  Google Scholar 

  65. Seitzer, P., Modest observations of space debris at geosynchronous orbit, Adv. Space Res., 2004, vol. 34, pp. 1139–1142.

    Article  ADS  Google Scholar 

  66. Sun, R.-Y., Zhao, C.-Y., Zhang, M.-J., and Hou, Y.-G., Dynamical evolution of high area-to-mass ratio objects in Molniya orbits, Adv. Space Res., 2013, vol. 51, no. 11, pp. 2136–2144.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Mironov or I. V. Usovik.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, V.V., Usovik, I.V. Retrospective of the Space Debris Problem. Part 1. Technogenic Clogging of Space and Means of Its Control. Cosmic Res 58, 92–104 (2020). https://doi.org/10.1134/S0010952520020070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520020070

Navigation