Skip to main content
Log in

Estimation of the Size of an Electric Current with High Helium Abundance inside a Magnetic Cloud

  • BRIEF COMMUNICATIONS
  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

In a recent paper [1], based on the data from the OMNI solar wind measurement database and our catalog of large-scale solar wind phenomena (ftp://ftp.iki.rssi.ru/pub/omni/ [2]), it was shown that magnetic clouds contain an electric current with an elevated content of helium ions in the center of the event interval, while in Ejecta such structures are not observed. From simple geometric considerations, an upper estimate is obtained for the size of the cross section of the electric current, which is equal to ~10% of the linear size of the cross section of the magnetic cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yermolaev, Y.I., Lodkina, I.G., Yermolaev, M.Y., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis. 4. Helium abundance, 2018. http://arxiv.org/abs/1807.03579.

  2. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  ADS  Google Scholar 

  3. Hildner, E., Mass ejections from the solar corona into interplanetary space, Study of Travelling Interplanetary Phenomena, Shea, M.A., Smart, D.F., and Wu, S.T., Eds., 1977, vol. 71, pp. 3–20. https://doi.org/10.1007/978-90-277-0860-1_1

  4. Munro, R.H., Gosling, J.T., Hildner, E., et al., The association of coronal mass ejection transients with other forms of solar activity, Sol. Phys., 1979, vol. 61, pp. 201–215. https://doi.org/10.1007/BF00155456

    Article  ADS  Google Scholar 

  5. Gosling, J.T., The solar flare myth, J. Geophys. Res., 1993, vol. 98, pp. 18937–18950. https://doi.org/10.1029/93JA01896

    Article  ADS  Google Scholar 

  6. Gopalswamy, N., History and development of coronal mass ejections as a key player in solar terrestrial relationship, Geosci. Lett., 2016, vol. 3, id 8. https://doi.org/10.1186/s40562-016-0039-2

  7. Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 1981, vol. 86, pp. 6673–6684. https://doi.org/10.1029/JA086iA08p06673

    Article  ADS  Google Scholar 

  8. Klein, L.W. and Burlaga, L.F., Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1982, vol. 87, pp. 613–624. https://doi.org/10.1029/JA087iA02p00613

    Article  ADS  Google Scholar 

  9. Gosling, J.T., Coronal mass ejections and magnetic flux ropes in interplanetary space, Physics of Magnetic Flux Ropes, 1990, vol. 58, pp. 343–364.

    Article  Google Scholar 

  10. Cane, H.V. and Richardson, I.G., Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 2003, vol. 108, р. 1156. https://doi.org/10.1029/2002JA009817

    Article  Google Scholar 

  11. Wu, C.C. and Lepping, R.P., Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23, Sol. Phys., 2011, vol. 269, pp. 141–153. https://doi.org/10.1007/s11207-010-9684-3

    Article  ADS  Google Scholar 

  12. King, J.H. and Papitashvili, N.E., Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 2004, vol. 110, no. A2, A02209. https://doi.org/10.1029/2004JA010804

    Article  Google Scholar 

  13. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res., 2015, vol. 120, no. 9, pp. 7094–7106. https://doi.org/10.1002/2015JA021274

    Article  Google Scholar 

  14. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., et al., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIRs vs. sheaths and MCs vs. Ejecta, Sol. Phys., 2017, vol. 292, no. 12, id 193. https://doi.org/10.1007/s11207-017-1205-1

  15. Jian, L.K., Russell, C.T., Luhmann, J.G., and Skoug, R.M., Properties of interplanetary coronal mass ejections at one AU during 1995–2004, Sol. Phys., 2006. 239, pp. 393–436.

    Article  ADS  Google Scholar 

  16. Yermolaev, Yu.I., Where are medium-scale solar-wind variations formed?, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 162–163.

    Article  ADS  Google Scholar 

  17. Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics, Phys.-Usp., 2004, vol. 47, no. 8, pp. 749–788.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 16-12-10062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Yermolaev.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermolaev, Y.I. Estimation of the Size of an Electric Current with High Helium Abundance inside a Magnetic Cloud. Cosmic Res 57, 471–472 (2019). https://doi.org/10.1134/S0010952519060030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952519060030

Navigation