Skip to main content
Log in

Significant differences in invertebrate assemblages between low- and high-uplifted intertidal shores in the Simeulue Island, Indonesia, after a megathrust earthquake of 2004 and 2005

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Co-seismic uplift provides significant effects on rocky intertidal assemblages. However, previous studies mainly focused on analysing invertebrate assemblages before and after the uplift event and are conducted in the Pacific Ocean region. The present study evaluated differences in invertebrate assemblages (i.e. species richness, species density, abundance, and composition) between low-uplifted (the uplift of ≤ 75 cm) and high-uplifted (the uplift of > 75 cm) intertidal shores in the Simeulue Island, Indonesia, after a megathrust earthquake of Indian Ocean in 2004 and 2005. The proportion of sediment types (i.e. clay, silt, sand, and gravel) was also analysed to determine their relationships to these assemblages. Invertebrate assemblages on high-uplifted intertidal shores showed lower species richness, higher abundance, and different compositions compared to those on low-uplifted intertidal shores. High-uplifted intertidal shores were dominated by Clypeomorus bifasciata (G.B. Sowerby II, 1855) (a cerithiid gastropod), while low-uplifted intertidal shores were dominated by Calcinus sp. (a hermit crab). Invertebrate assemblages were not significantly influenced by the proportion of most sediment types. These results indicate that co-seismic uplift should be considered in the management of rocky intertidal shores, especially those in the geologically active area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

dbRDA:

Distance-based redundancy analysis

PCOA:

Principal coordinates analysis

PERMANOVA:

Permutational multivariate analysis of variance

SAC:

Species accumulation curve

SIMPER:

Similarity percentage

References

  • Airoldi, L. (2003). The effects of sedimentation on rocky coast assemblages. Oceanography Marine Biology,41, 161–236.

    Google Scholar 

  • Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology,23, 1435–1452.

    Google Scholar 

  • Almany, G. R. (2004). Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos,106, 275–284.

    Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology,26, 32–46.

    Google Scholar 

  • Arce, E., & Córdoba-Aguilar, A. (2018). The right choice: Predation pressure drives shell selection decisions in the hermit crab Calcinus californiensis. Canadian Journal of Zoology,96, 454–459.

    Google Scholar 

  • Bodin, P., & Klinger, T. (1986). Coastal uplift and mortality of intertidal organisms caused by the September 1985 Mexico earthquakes. Science,233, 1071–1072.

    CAS  PubMed  Google Scholar 

  • Borrero, J. C., McAdoo, B., Jaffe, B., Dengler, L., Gelfenbaum, G., Higman, B., et al. (2011). Field survey of the March 28, 2005 Nias-Simeulue earthquake and tsunami. Pure and Applied Geophysics,168, 1075–1088.

    Google Scholar 

  • Briggs, R. W., Sieh, K., Meltzner, A. J., Natawidjaja, D., Galetzka, J., Suwargadi, B., et al. (2006). Deformation and slip along the Sunda Megathrust in the great 2005 Nias-Simeulue earthquake. Science,311, 1897–1901.

    CAS  PubMed  Google Scholar 

  • Brown, B., Yuniati, W., Ahmad, R., & Soulsby, I. (2015). Observations of natural recruitment and human attempts at mangrove rehabilitation after seismic (tsunami and earthquake) events in Simeuleu Island and Singkil lagoon, Aceh, Indonesia. In V. Santiago-Fandino, Y. Kontar, & Y. Kaneda (Eds.), Post-tsunami hazard: Reconstruction and restoration (pp. 311–327). New York: Springer.

    Google Scholar 

  • Burdige, D. J. (2007). Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews,107, 467–485.

    CAS  PubMed  Google Scholar 

  • Cahyarini, S. (2013). Seasonal mean variability of coral-based sea surface salinity from Simeulue, Mentawai, Bunaken, and Bali. Indonesian Journal on Geoscience,8, 119–125.

    Google Scholar 

  • Cannon, L. (1979). Ecological observations on Cerithium moniliferum Kiener (Gastropoda: Cerithiidae) and its trematode parasites at Heron Island, Great Barrier Reef. Marine Freshwater Research,30, 365–374.

    Google Scholar 

  • Castilla, J. C. (1988). Earthquake-caused coastal uplift and its effects on rocky intertidal kelp communities. Science,242, 440–443.

    CAS  PubMed  Google Scholar 

  • Castilla, J. C., Manríquez, P. H., & Camaño, A. (2010). Effects of rocky shore coseismic uplift and the 2010 Chilean mega-earthquake on intertidal biomarker species. Marine Ecology Progress Series,418, 17–23.

    Google Scholar 

  • Chappuis, E., Terradas, M., Cefalì, M. E., Mariani, S., & Ballesteros, E. (2014). Vertical zonation is the main distribution pattern of littoral assemblages on rocky shores at a regional scale. Estuarine, Coastal and Shelf Science,147, 113–122.

    Google Scholar 

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology,18, 117–143.

    Google Scholar 

  • Corte, G. N., Schlacher, T. A., Checon, H. H., Barboza, C. A. M., Siegle, E., Coleman, R. A., et al. (2017). Storm effects on intertidal invertebrates: Increased beta diversity of few individuals and species. PeerJ,5, e3360.

    PubMed  PubMed Central  Google Scholar 

  • Crowe, T. P., Cusson, M., Bulleri, F., Davoult, D., Arenas, F., Aspden, R., et al. (2013). Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE,8, 1–13.

    Google Scholar 

  • Dhiauddin, R., Gemilang, W. A., Wisha, U., Rahmawan, G., & Kusumah, G. (2017). Pemetaan kerentanan pesisir Pulau Simeulue dengan metode CVI (Coastal Vulnerability Index). EnviroScienteae,13, 157–170.

    Google Scholar 

  • Díaz-Ferguson, E., Haney, R., Wares, J., & Silliman, B. (2010). Population genetics of a trochid gastropod broadens picture of Caribbean sea connectivity. PLoS ONE,5, 1–8.

    Google Scholar 

  • Dominey-Howes, D., Cummins, P., & Burbidge, D. (2007). Historic records of teletsunami in the Indian Ocean and insights from numerical modelling. Natural Hazards,42, 1–17.

    Google Scholar 

  • Eckersley, L., & Scrosati, R. A. (2012). Temperature, desiccation, and species performance trends along an intertidal elevation gradient. Current Development in Oceanography,5, 59–73.

    Google Scholar 

  • Farhan, A. R., & Lim, S. (2010). Integrated coastal zone management towards Indonesia global ocean observing system (INA-GOOS): Review and recommendation. Ocean & Coastal Management,53, 421–427.

    Google Scholar 

  • Felton, E. (2002). Sedimentology of rocky shorelines: 1. A review of the problem, with analytical methods, and insights gained from the Hulopoe gravel and the modern rocky shoreline of Lanai, Hawaii. Sedimentary Geology,152, 221–245.

    Google Scholar 

  • Fransozo, A., & Mantelatto, F. (1998). Population structure and reproductive period of the tropical hermit crab Calcinus tibicen (Decapoda: Diogenidae) in the region of Ubatuba, Sao Paulo, Brazil. Journal of Crustacean Biology,18, 738–745.

    Google Scholar 

  • Geis, E., Bilek, S., Arcas, D., & Titov, V. (2006). Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth Planets Space,58, 185–193.

    Google Scholar 

  • Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters,4, 379–391.

    Google Scholar 

  • Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., et al. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances,4, eaao4350.

    PubMed  PubMed Central  Google Scholar 

  • Hermosillo-Nunez, B., Rodriguez-Zaragoza, F., Ortiz, M., Galvan-Villa, C., Cupul-Magana, A., & Rios-Jara, E. (2015). Effect of habitat structure on the most frequent echinoderm species inhabiting coral reef communities at Isla Isabel National Park (Mexico). Community Ecology,16, 125–134.

    Google Scholar 

  • Hidas, E. Z., Costa, T. L., Ayre, D. J., & Minchinton, T. E. (2007). Is the species composition of rocky intertidal invertebrates across a biogeographic barrier in south-eastern Australia related to their potential for dispersal? Marine Freshwater Research,58, 835–842.

    Google Scholar 

  • Huff, T. M., & Jarett, J. K. (2007). Sand addition alters the invertebrate community of intertidal coralline turf. Marine Ecology Progress Series,345, 75–82.

    Google Scholar 

  • Hutchinson, N., & Williams, G. (2003). Disturbance and subsequent recovery of mid-shore assemblages on seasonal, tropical, rocky shores. Marine Ecology Progress Series,249, 25–38.

    Google Scholar 

  • Idjadi, J., & Edmunds, P. (2006). Scleractinian corals as facilitators for other invertebrates on Caribbean reef. Marine Ecology Progress Series,319, 117–127.

    Google Scholar 

  • Jaramillo, E., Dugan, J. E., Hubbard, D. M., Melnick, D., Manzano, M., Duarte, C., et al. (2012). Ecological implications of extreme events: Footprints of the 2010 earthquake along the Chilean coast. PLoS ONE,7(5), e35348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs,69, 1–24.

    Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology , 2nd edition. Amsterdam: Elsevier.

    Google Scholar 

  • Lisandro, B.-C., & Giacomo, O. C. (2007). Replication and mitigation of effects of confounding variables in environmental impact assessment: Effect of marinas on rocky-shore assemblages. Marine Ecology Progress Series,334, 21–35.

    Google Scholar 

  • Litulo, C. (2005). Population dynamics and reproduction of the hermit crab Calcinus gaimardii (Anomura: Diogenidae) at Inhaca Island, southern Mozambique. Journal of Natural History,39, 3359–3367.

    Google Scholar 

  • Litulo, C., Abreu, D., & Tudge, C. (2006). Reproductive biology of Calcinus laevimanus (Randall, 1840) (Decapoda: Anomura: Diogenidae) from Inhaca Island, southern Mozambique. Crustacean Research,6, 57–66.

    Google Scholar 

  • Londoño-Cruz, E., López de Mesa-Agudelo, L. A., Arias-Galvez, F., Herrera-Paz, D. L., Prado, A., Cuella, L. M., et al. (2014). Distribution of macroinvertebrates on intertidal rocky shores in Gorgona Island, Colombia (tropical eastern Pacific). Revista de Biologia Tropical,62, 189–198.

    Google Scholar 

  • McMahon, R. F. (1990). Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: A new synthesis. Hydrobiologia,193, 241–260.

    Google Scholar 

  • Menconi, M., Benedetti-Cecchi, L., & Cinelli, F. (1999). Spatial and temporal variability in the distribution of algae and invertebrates on rocky shores in the northwest Mediterranean. Journal of Experimental Marine Biology and Ecology,233(1), 1–23.

    Google Scholar 

  • Micheli, F., Heiman, K. W., Kappel, C. V., Martone, R. G., Sethi, S. A., Osio, G. C., et al. (2016). Combined impacts of natural and human disturbances on rocky shore communities. Ocean & Coastal Management,126, 42–50.

    Google Scholar 

  • Miller, A. W., & Ambrose, R. F. (2000). Sampling patchy distributions: Comparison of sampling designs in rocky intertidal habitats. Marine Ecology Progress Series,196, 1–14.

    Google Scholar 

  • Miller, L. P., Harley, C. D. G., & Denny, M. W. (2009). The role of temperature and desiccation stress in limiting the local-scale distribution of the owl limpet, Lottia gigantea. Functional Ecology,23, 756–767.

    Google Scholar 

  • Minchinton, T. E., & Fels, K. J. (2013). Sediment disturbance associated with trampling by humans alters species assemblages on a rocky intertidal seashore. Marine Ecology Progress Series,472, 129–140.

    Google Scholar 

  • Moring, J. R. (1996). Short-term changes in tidepools following two hurricanes. Hydrobiologia,328, 155–160.

    Google Scholar 

  • Nelson, H. R., Kuempel, C. D., & Altieri, A. H. (2016). The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere,7, e01399.

    Google Scholar 

  • Noda, T., Iwasaki, A., & Fukaya, K. (2015). Recovery of rocky intertidal zonation: Two years after the 2011 great east Japan earthquake. Journal of the Marine Biological Association of the United Kingdom,96, 1549–1555.

    Google Scholar 

  • Noda, T., Iwasaki, A., & Fukaya, K. (2016). Rocky intertidal zonation: Impacts and recovery from the great east Japan earthquake. In J. Urabe & T. Nakashizuka (Eds.), Ecological impacts of tsunamis on coastal ecosystems: Lessons from the great East Japan earthquake (pp. 25–34). Tokyo: Springer.

    Google Scholar 

  • Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Stevens, M., & Wagner, H. (2016). Vegan: Community ecology package, Vol. R package version 2 (pp. 3–5). Retrieved September 26, 2016 from https://CRAN.R-project.org/package=vegan.

  • Oliveira, J. P., Sousa-Pinto, I., Weber, G. M., & Bertocci, I. (2015). Patterns of recovery of intertidal organisms after compounded anthropogenic disturbances. Marine Ecology Progress Series,524, 107–123.

    Google Scholar 

  • Osman, R. W. (1977). The establishment and development of a marine epifaunal community. Ecological Monographs,47, 37–63.

    Google Scholar 

  • Rahman, S., & Barkati, S. (2012). Spatial and temporal variation in species composition and abundance of benthic molluscs along four rocky shores of Karachi. Turkish Journal of Zoology,36, 291–306.

    Google Scholar 

  • Rao, L. M., & Ramasarma, D. V. (1980). Spawning and larval development of Clypeomorus clypéomorusJousseaume 1888 in Waltair coast. Journal of Molluscan Studies,46, 186–191.

    Google Scholar 

  • Reese, E. (1969). Behavioral adaptations of intertidal hermit crabs. American Zoologist,9, 343–355.

    Google Scholar 

  • Ricardo, S., & Christine, H. (2007). Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Marine Ecology Progress Series,342, 1–14.

    Google Scholar 

  • Rizal, S., Damm, P., Wahid, M., Sundermann, J., Ilhamsyah, Y., Iskandar, T., et al. (2012). General circulation in the Malacca Strait and Andaman Sea: A numerical model study. American Journal of Environmental Sciences,8, 479–488.

    Google Scholar 

  • Roleda, M. Y., & Dethleff, D. (2011). Storm-generated sediment deposition on rocky shores: Simulating burial effects on the physiology and morphology of Saccharina latissima sporophytes. Marine Biology Research,7, 213–223.

    Google Scholar 

  • Rollon, R. N., Samson, M. S., Villamayor, B. M. R., Albano, G. M. G., & Siringan, F. F. (2015). Attributes of the earthquake-uplifted intertidal habitats and their implications to the Maribojoc and Loon coastal fisheries. Ocean & Coastal Management,111, 12–24.

    Google Scholar 

  • Ryu, S.-H., Jang, K.-H., Choi, E.-H., Kim, S.-K., Song, S.-J., Cho, H.-J., et al. (2012). Biodiversity of marine invertebrates on rocky shores of Dokdo, Korea. Zoological Studies,51, 710–726.

    Google Scholar 

  • Scrosati, R. A., Knox, A. S., Valdivia, N., & Molis, M. (2011). Species richness and diversity across rocky intertidal elevation gradients in Helgoland: Testing predictions from an environmental stress model. Helgoland Marine Research,65, 91–102.

    Google Scholar 

  • Sepúlveda, R. D., & Valdivia, N. (2017). Macrobenthic community changes of intertidal sandy shores after a mega-disturbance. Estuaries and Coasts,40, 493–501.

    Google Scholar 

  • Smith, R. S., Johnston, E. L., & Clark, G. F. (2014). The role of habitat complexity in community development is mediated by resource availability. PLoS ONE,9, e102920.

    PubMed  PubMed Central  Google Scholar 

  • Stephenson, W. J. (2000). Shore platforms: A neglected coastal feature? Progress in Physical Geography,24, 311–327.

    Google Scholar 

  • Stevčić, Č., Pérez-Miguel, M., Drake, P., Tovar-Sánchez, A., & Cuesta, J. A. (2018). Macroinvertebrate communities on rocky shores: Impact due to human visitors. Estuarine, Coastal and Shelf Science,211, 127–136.

    Google Scholar 

  • Suyarso, S. (2008). Topographic changes after 2004 and 2005 earthquakes at Simeulue and Nias Islands identified using uplifted reefs. Journal of Coastal Developement,12, 20–29.

    Google Scholar 

  • Tajima, F., Mori, J., & Kennett, B. L. N. (2013). A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics,586, 15–34.

    Google Scholar 

  • Vita-Finzi, C., & Situmorang, B. (1989). Holocene coastal deformation in Simeulue and Nias, Indonesia. Marine Geology,89, 153–161.

    Google Scholar 

  • Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology,30, 377–392.

    Google Scholar 

  • Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.

    Google Scholar 

  • Wilson, M. A. (1987). Ecological dynamics on pebbles, cobbles, and boulders. Palaios,2, 594–599.

    Google Scholar 

  • Wood, A., & Gardner, J. P. A. (2007). Small spatial scale population genetic structure in two limpet species endemic to the Kermadec Islands, New Zealand. Marine Ecology Progress Series,349, 159–170.

    Google Scholar 

  • Wren, J. L. K., Kobayashi, D. R., Jia, Y., & Toonen, R. J. (2016). Modeled population connectivity across the Hawaiian archipelago. PLoS ONE,11, e0167626.

    PubMed  PubMed Central  Google Scholar 

  • Yanez, B., Carballo, J., Olabarria, C., Barron, J., & Yanez, B. (2008). Recovery of macrobenthic assemblages following experimental sand burial. Oceanologia,50, 391–420.

    Google Scholar 

Download references

Acknowledgements

This paper is a part of the “Ekspedisi Widya Nusantara” project in 2017 held by Research Center for Oceanography—Indonesian Institute of Science. We wish to sincerely thank A’an Johan Wahyudi and Udhi Eko Hernawan for managing the project. We also thank Suharsono and Ricky Rositasari for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadiyanto Hadiyanto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadiyanto, H., Setyastuti, A., Widyastuti, E. et al. Significant differences in invertebrate assemblages between low- and high-uplifted intertidal shores in the Simeulue Island, Indonesia, after a megathrust earthquake of 2004 and 2005. COMMUNITY ECOLOGY 21, 79–89 (2020). https://doi.org/10.1007/s42974-020-00009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-020-00009-4

Keywords

Navigation