Skip to main content
Log in

Universal functions with respect to the double Walsh system for classes of integrable functions

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The paper addresses questions on existence and structure of universal functions for spaces L1(E), E ⊂ [0, 1)2, with respect to the doubleWalsh system in the sense of signs of Fourier coefficients. It is shown that for each ε > 0 one can find a measurable set Eε ⊂ [0, 1)2 with measure |Eε| > 1−ε, such that by a proper modification of any integrable function f ∈ L1[0, 1)2 outside Eε one can get an integrable function L1[0, 1)2 which is universal for L1(Eε) with respect to the double Walsh system in the sense of signs of Fourier coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. D. Birkhoff, Démonstration d’un théoréme élémentaire sur les fonctions entiéres, C. R. Acad,. Sci. Paris, 189 (1929), 473–475.

    MATH  Google Scholar 

  2. Z. Buczolich, On universal functions and series, Acta Math. Hungar., 49 (1987), 403–414.

    Article  MathSciNet  Google Scholar 

  3. L. Carleson, On convergence and growth of partial sums of Fourier eries, Acta Math., 116 (1966), 135–157.

    Article  MathSciNet  Google Scholar 

  4. S. A. Episkoposian, On the existence of universal series by Walsh system, J. Contemp. Math. Anal., 38 (2003), 16–32.

    MathSciNet  Google Scholar 

  5. C. Fefferman, The multiple problem for the ball, Ann. Math., 94 (1971), 330–336.

    Article  MathSciNet  Google Scholar 

  6. R. D. Getsadze, On divergence in measure of general multiple orthogonal Furier series, Dokl. Akad. Nauk SSSR, 306 (1989), 24–25 (in Russian); translation in Soviet Math. Dokl., 39 (1989), 430-431.

    Google Scholar 

  7. G. G. Gevorgyan, and K. A. Navasardyan, On Walsh series with monotone coefficients, Izvestiya: Math., 63 (1999), 37–55.

    Article  MathSciNet  Google Scholar 

  8. M. G. Grigorian, On the convergence in Lp, p ∈ (0, 1), metric of spherical partial sums of multiple Fourier series of summable functions, RAS Arm. SSR, 73 (1981), 87–90 (in Russian).

    MATH  Google Scholar 

  9. M. G. Grigorian, On the representation of functions by orthogonal series in weighted spaces, Studia Math., 134 (1999), 207–216.

    Article  MathSciNet  Google Scholar 

  10. M. G. Grigorian, On orthogonal series universal in Lp[0, 1], p > 0, J. Contemp. Math. Anal., 37 (2002), 16–29.

    MathSciNet  Google Scholar 

  11. M. G. Grigoryan, and L. N. Galoyan, On the universal functions, J. Approx. Theory, 225 (2018), 191–208.

    Article  MathSciNet  Google Scholar 

  12. M. G. Grigorian, T. M. Grigorian, and A. A. Sargsyan, On the universal function for weighted spaces Lp μ[0, 1], p ≥ 1, Banach J. Math. Anal., 12 (2018), 104–125.

    Article  MathSciNet  Google Scholar 

  13. M. G. Grigorian, and K. A. Navasardyan, Universal functions in “correction” problems guaranteeing the convergence of Fourier-Walsh series, Izv. Math. RAN, 80 (2016), 1057–1083.

    Article  Google Scholar 

  14. M. G. Grigorian, and A. A. Sargsyan, On the universal function for the class Lp[0, 1], p ∈ (0, 1), J. Funct. Anal., 270 (2016), 3111–3133.

    Article  MathSciNet  Google Scholar 

  15. M. G. Grigorian, and A. A. Sargsyan, The structure of universal functions for Lp- spaces p ∈ (0, 1), Sbornik: Math., 209 (2018), 35–55.

    Article  MathSciNet  Google Scholar 

  16. K. G. Gross-Erdmann, Holomorphe Monster und Universelle Funktionen, Mitt. Math. Sem. Giessen˙, 176 (1987), 1–84.

    MathSciNet  Google Scholar 

  17. D. C. Harris, Almost everywhere divergence of multiple Walsh-Fourier series, proc. Amer. Math. Soc., 101 (1987), 637–643.

    Article  MathSciNet  Google Scholar 

  18. V. I. Ivanov, Representation of functions by series in metric symmetric spaces without linear functionals, proc. Steklov Inst. Math., 189 (1990), 37–85.

    Google Scholar 

  19. I. Jo´o, On the divergence of eigenfunction expansions, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 32 (1989), 2–36.

    Google Scholar 

  20. A. N. Kolmogorov, Sur les fonctions harmoniques conjuguées les séries de Fourier, Fund. Math., 7 (1925), 23–28.

    Google Scholar 

  21. V. G. Krotov, On the smoothness of universal Marcinkiewicz functions and universal trigonometric series, Soviet Math. (Iz. VUZ), 35 (1991), 24–28.

    MathSciNet  MATH  Google Scholar 

  22. V. G. Krotov, Representation of measurable functions by series in the Faber-Schauder system, and universal series, Math. USSR-Izv., 11 (1977), 205–218.

    Article  Google Scholar 

  23. N. N. Lusin, On the fundamental theorem of the integral calculus, Mat. Sb., 28 (1912), 266–294 (in Russian)

    Google Scholar 

  24. G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math., 2 (1952), 72–87.

    Article  MathSciNet  Google Scholar 

  25. J. Marcinkiewicz, Sur les nombres derives, Fund. Math., 24 (1935), 305–308.

    Article  Google Scholar 

  26. D. E. Menshov, On the uniform convergence of Fourier series, Mat. Sb., 53 (1942), 67–96 (in Russian) Analysis Mathematica A. SARGSYAN and M. GRIGORYAN: UNIVERSAL FUNCTIONS …

    Google Scholar 

  27. D. E. Menshov, On universal sequences of functions, Mat. Sb., 65 (1964), 272–312 (in Russian).

    MathSciNet  Google Scholar 

  28. K. A. Navasardyan, Series with monotone coefficients by Walsh system, J. Contemp. Math. Anal., 42 (2007), 258–269.

    Article  MathSciNet  Google Scholar 

  29. A. M. Olevsky, About some features of Fourier series in spaces Lp p < 2), Mat. Sb., 77 (1968), 251–258 (in Russian).

    MathSciNet  Google Scholar 

  30. A. C. Paley, A remarkable set of orthogonal functions, proc. London Math. Soc., 34 (1932), 241–279.

    Article  MathSciNet  Google Scholar 

  31. M. Riesz, Sur les fonctions conjugées, Math. Z., 27 (1927), 214–244.

    Google Scholar 

  32. A. A. Sargsyan, Quasiuniversal Fourier-Walsh series for classes Lp[0, 1], p > 1, Math. Notes, 104 (2018), 278–292.

    Article  MathSciNet  Google Scholar 

  33. A. A. Sargsyan, and M. G. Grigorian, Universal function for a weighted space L1 μ[0, 1], positivity, 21 (2017), 1457–1482.

    Google Scholar 

  34. A. A. Talalian, On the universal series with respect to rearrangements, Izv. AN. SSSR Ser. Math., 24 (1960), 567–604.

    Google Scholar 

  35. P. L. Ul’yanov, Representation of functions by series and classes ϕ(L), Uspekhi Mat. Nauk, 27 (1972), 3–52 (in Russian).

    MathSciNet  Google Scholar 

  36. S. M. Voronin, A theorem on the “universality” of the Riemann zeta-function, Izv. AN SSSR, 39 (1975), 475–486 (in Russian); translation in Math. USSR-Izvestiya, 9 (1975), 443-445.

    MathSciNet  MATH  Google Scholar 

  37. J. L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math,., 45 (1923), 5–24.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sargsyan.

Additional information

Grigoryan’s work was partially supported by the RA MES (Republic of Armenia, Ministry of Education and Science) State Committee of Science, in the frame of the research project 18T-1A148.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Grigoryan, M. Universal functions with respect to the double Walsh system for classes of integrable functions. Anal Math 46, 367–392 (2020). https://doi.org/10.1007/s10476-020-0024-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-020-0024-z

Key words and phrases

Mathematics Subject Classification

Navigation