Skip to main content
Log in

p-Improving Inequalities for Discrete Spherical Averages

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Let λ2 ∈ ℕ, and in dimensions d ≥ 5, let Aλf(x) denote the average of f: ℤd → ℝ over the lattice points on the sphere of radius λ centered at x. We prove ℓp improving properties of Aλ:

$$\begin{array}{*{20}{c}} {{{\left\| {{A_\lambda }} \right\|}_{{\ell ^{p \to }}{\ell ^{p'}}}} \leqslant {C_{d,p,\omega ({\lambda ^2})}}{\lambda ^{(1 - \tfrac{2}{p})}},}&{\frac{{d - 1}}{{d + 1}} < p \leqslant \frac{d}{{d - 2}}} \end{array}.$$

It holds in dimension d = 4 for odd λ2. The dependence is in terms of ω2), the number of distinct prime factors of λ2. These inequalities are discrete versions of a classical inequality of Littman and Strichartz on the Lp improving property of spherical averages on ℝd. In particular they are scale free, in a natural sense. The proof uses the decomposition of the corresponding multiplier whose properties were established by Magyar–Stein–Wainger, and Magyar. We then use a proof strategy of Bourgain, which dominates each part of the decomposition by an endpoint estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Anderson, B. Cook, K. Hughes and A. Kumchev, Improved ℓp-boundedness for integral k-spherical maximal functions, Discrete Anal. (2018), Paper No. 10, 18 pp.

    Google Scholar 

  2. J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris S´er. I Math., 301 (1985), 499–502.

    MathSciNet  Google Scholar 

  3. M. Christ, Convolution, curvature, and combinatorics: a case study, Internat. Math. Res. Notices, 19 (1998), 1033–1048.

    Article  MathSciNet  Google Scholar 

  4. B. Cook, Maximal function inequalities and a theorem of Birch, Israel J. Math., 231 (2019), 211–241.

    Article  MathSciNet  Google Scholar 

  5. A. Culiuc, R. Kesler and M. T. Lacey, Sparse bounds for the discrete cubic Hilbert transform, Anal. PDE, 12 (2019), 1259–1272.

    Article  MathSciNet  Google Scholar 

  6. K. Hughes, Restricted weak-type endpoint estimates for k-spherical maximal functions, Math. Z., 286 (2017), 1303–1321.

    Article  MathSciNet  Google Scholar 

  7. K. Hughes, The discrete spherical averages over a family of sparse sequences, (2016), ArXiv: 1609.04313.

    MATH  Google Scholar 

  8. K. Hughes, ℓp-improving for discrete spherical averages, (2018), ArXiv: 1804.09260.

    Google Scholar 

  9. A. D. Ionescu, An endpoint estimate for the discrete spherical maximal function, Proc. Amer. Math. Soc., 132 (2004), 1411–1417.

    Article  MathSciNet  Google Scholar 

  10. A. D. Ionescu, An endpoint estimate for the discrete spherical maximal function,Proc. Amer. Math. Soc., 132 (2004), 1411–1417.

    Article  MathSciNet  Google Scholar 

  11. R. Kesler and D. M. Arias, Uniform sparse bounds for discrete quadratic phase Hilbert transforms, Anal. Math. Phys., 9 (2019), 263–274.

    Article  MathSciNet  Google Scholar 

  12. R. Kesler, M. T. Lacey and D. M. Arias, Sparse bound for the discrete spherical maximal functions, Pure Appl. Anal. (2018) (to appear).

    Google Scholar 

  13. H. D. Kloosterman, On the representation of numbers in the form ax2 + by2 + cz2 + dt2, Acta Math., 49 (1927), 407–464.

    Article  MathSciNet  Google Scholar 

  14. W. Littman, LpLq -estimates for singular integral operators arising from hyperbolic equations, in: Partial Differential Equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc. (Providence, R.I., 1973), pp. 479–481.

    Google Scholar 

  15. Á. Magyar, Lp-bounds for spherical maximal operators on Zn, Rev. Mat. Iberoam., 13 (1997), 307–317.

    Article  Google Scholar 

  16. Á. Magyar, Diophantine equations and ergodic theorems, Amer. J. Math.,124 (2002), 921–953.

    Article  MathSciNet  Google Scholar 

  17. Á. Magyar, On the distribution of lattice points on spheres and level surfaces of polynomials, J. Number Theory, 122 (2007), 69–83.

    Article  MathSciNet  Google Scholar 

  18. Á. Magyar, E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis: spherical averages, Ann. of Math. (2), 155 (2002), 189–208.

    Article  MathSciNet  Google Scholar 

  19. Á. Magyar, E. M. Stein and S. Wainger, Maximal operators associated to discrete subgroups of nilpotent Lie groups, J. Anal. Math., 101 (2007), 257–312.

    Article  MathSciNet  Google Scholar 

  20. D. M. Oberlin, Two discrete fractional integrals, Math. Res. Lett., 8 (2001), 1–6.

    Article  MathSciNet  Google Scholar 

  21. L. B. Pierce, Discrete fractional Radon transforms and quadratic forms, Duke Math. J., 161 (2012), 69–106.

    Article  MathSciNet  Google Scholar 

  22. E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis. II. Fractional integration, J. Anal. Math., 80 (2000), 335–355.

    Article  MathSciNet  Google Scholar 

  23. E. M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A., 73 (1976), 2174–2175.

    Article  MathSciNet  Google Scholar 

  24. E. M. Stein and S. Wainger, Two discrete fractional integral operators revisited, J. Anal. Math., 87 (2002), 451–479.

    Article  MathSciNet  Google Scholar 

  25. R. S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc., 148 (1970), 461–471.

    Article  MathSciNet  Google Scholar 

  26. T. Tao and J. Wright, Lp improving bounds for averages along curves,J. Amer. Math. Soc., 16 (2003), 605–638.

    Article  MathSciNet  Google Scholar 

  27. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204–207.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Lacey.

Additional information

Research was supported in part by grant from the US National Science Foundation, DMS-1600693 and the Australian Research Council ARC DP160100153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesler, R., Lacey, M.T. ℓp-Improving Inequalities for Discrete Spherical Averages. Anal Math 46, 85–95 (2020). https://doi.org/10.1007/s10476-020-0019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-020-0019-9

Key words and phrases

Mathematics Subject Classification

Navigation