Skip to main content
Log in

A Prime Geodesic Theorem of Gallagher Type for Riemann Surfaces

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We consider a cofinite Fuchsian group of the first kind with finitely many inequivalent parabolic elements and a unitary multiplier system of an arbitrary weight on it. Through the Gallagher–Koyama approach to the prime geodesic theorem on the corresponding noncompact hyperbolic surface, we reduce the exponent in the error term from \(\frac{3}{4}\) to \(\frac{7}{10}\) outside a set of finite logarithmic measure. Recent advances in results of the latter type and the methods applied are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Avdispahić, On Koyama’s refinement of the prime geodesic theorem, Proc. Japan Acad. Ser. A, 94 (2018), 21–24.

    Article  MathSciNet  Google Scholar 

  2. M. Avdispahić, Gallagherian PGT on PSL(2, ℤ), Funct. Approx. Comment. Math., 58 (2018), 207–213.

    Article  MathSciNet  Google Scholar 

  3. M. Avdispahić, Prime geodesic theorem for the modular surface, Hacet. J. Math. Stat. (2019), doi.org/10.15672/hujms.568323.

    Google Scholar 

  4. M. Avdispahić, Errata and addendum to “On the prime geodesic theorem for hyperbolic 3-manifolds”, Math. Nachr., 291 (2018), 2160–2167.

    Article  MathSciNet  Google Scholar 

  5. M. Avdispahić and Z. Šabanac, Gallagherian prime geodesic theorem in higher dimensions, Bull. Malays. Math. Sci. Soc. (2019), doi: 10.1007.s40840-019-00849-y.

    Google Scholar 

  6. O. Balkanova, D. Chatzakos, G. Cherubini, D. Frolenkov and N. Laaksonen, Prime geodesic theorem in the 3-dimensional hyperbolic space, Trans. Amer. Math. Soc., 372 (2019), 5355–5374.

    Article  MathSciNet  Google Scholar 

  7. O. Balkanova and D. Frolenkov, Bounds for a spectral exponential sum, J. London Math. Soc. (to appear), doi.org/10.1112/jlms.12174.

  8. O. Balkanova and D. Frolenkov, Prime geodesic theorem for the Picard manifold, arxiv.org/abs/1804.00275v2.

  9. A. Balog, A. Biró, G. Harcos and P. Maga, The prime geodesic theorem in square mean, J. Number Theory, 198 (2019), 239–249.

    Article  MathSciNet  Google Scholar 

  10. Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordeaux, 14 (2002), 59–72.

    Article  MathSciNet  Google Scholar 

  11. D. Chatzakos, G. Cherubini and N. Laaksonen, Second moment of the prime geodesic theorem for PSL(2, ℤ[i]), arXiv:1812.11916.

  12. G. Cherubini and J. Guerreiro, Mean square in the prime geodesic theorem, Algebra Number Theory, 12 (2018), 571–597.

    Article  MathSciNet  Google Scholar 

  13. D. L. DeGeorge, Length spectrum for compact locally symmetric spaces of strictly negative curvature, Ann. Sci. École Norm. Sup., 10 (1977), 133–152.

    Article  MathSciNet  Google Scholar 

  14. A. Deitmar, A prime geodesic theorem for higher rank spaces, Geom. Funct. Anal., 14 (2004), 1238–1266.

    Article  MathSciNet  Google Scholar 

  15. J. Fischer, An Approach to the Selberg Trace Formula via the Selberg Zeta function, Lecture Notes in Math., vol. 1253, Springer (1987).

  16. P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math., 11 (1970), 329–339.

    Article  MathSciNet  Google Scholar 

  17. P. X. Gallagher, Some consequences of the Riemann hypothesis, Acta Arith., 37 (1980), 339–343.

    Article  MathSciNet  Google Scholar 

  18. R. Gangolli and G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math. J., 78 (1980), 1–44.

    Article  MathSciNet  Google Scholar 

  19. D. A. Hejhal, The Selberg Trace Formula for PSL(2, R). 1, Lecture Notes in Math., vol. 548, Springer (1976).

  20. D. A. Hejhal, The Selberg Trace Formula for PSL(2, R). 2, Lecture Notes in Math., vol. 1001, Springer (1983).

  21. H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann., 142 (1961), 385–398.

    Article  MathSciNet  Google Scholar 

  22. H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II. Nachtrag zu Math. Ann. 142, 385–398 (1961), Math. Ann., 143 (1961), 463–464.

    Article  MathSciNet  Google Scholar 

  23. H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math., 349 (1984), 136–159.

    MathSciNet  MATH  Google Scholar 

  24. H. Iwaniec, Spectral Methods of Automorphic Forms, 2nd Ed., Amer. Math. Soc. (Providence, RI, 2002).

    Google Scholar 

  25. S. Koyama, Refinement of prime geodesic theorem, Proc. Japan Acad. Ser. A Math. Sci., 92 (2016), 77–81.

    Article  MathSciNet  Google Scholar 

  26. S. Koyama, Prime geodesic theorem for arithmetic compact surfaces, Internat. Math. Res. Notices, 1998, 383–388.

    Google Scholar 

  27. W. Luo, Z. Rudnick and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal., 5 (1995), 387–401.

    Article  MathSciNet  Google Scholar 

  28. W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL2(ℤ)H2, Inst. Hautes Études Sci. Publ. Math., 81 (1995), 207–237.

    Article  Google Scholar 

  29. G. A. Margulis, Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Prilozhen., 3 (1969), 89–90 (in Russian).

    MathSciNet  Google Scholar 

  30. J. Park, Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds with cusps, in: G. van Dijk, M. Wakayama (eds.), Casimir Force, Casimir Operators and the Riemann Hypothesis, 9–13 November 2009, Kyushu University, Fukuoka, Japan, Walter de Gruyter (2010), pp. 89–104.

    Google Scholar 

  31. W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2), 118 (1983), 573–591.

    Article  MathSciNet  Google Scholar 

  32. M. Pollicott and R. Sharp, Length asymptotics in higher Teichmu¨ller theory, Proc. Amer. Math. Soc., 142 (2014), 101–112.

    Article  MathSciNet  Google Scholar 

  33. B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc., 233 (1977), 241–247.

    Article  MathSciNet  Google Scholar 

  34. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. B, 20 (1956), 47–87.

    MathSciNet  MATH  Google Scholar 

  35. K. Soundararajan and M. P. Young, The prime geodesic theorem, J. Reine Angew. Math., 676 (2013), 105–120.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Avdispahić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdispahić, M. A Prime Geodesic Theorem of Gallagher Type for Riemann Surfaces. Anal Math 46, 25–38 (2020). https://doi.org/10.1007/s10476-020-0013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-020-0013-2

Key words and phrases

Mathematics Subject Classification

Navigation