Synlett 2020; 31(12): 1205-1210
DOI: 10.1055/s-0040-1707119
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives from 1-(2-Aminophenyl)pyrroles and Sulfoxonium Ylides

Xin-Feng Cui
a   State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
Fang-Peng Hu
a   State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
a   State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
b   College of Chemistry and Material, Weinan Normal University, Shanxi Province, Weinan 714099, P. R. of China   Email: zhouxq2017@163.com
,
Zhen-Zhen Zhan
a   State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
,
a   State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China   Email: hgs@lzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 07 March 2020

Accepted after revision: 16 April 2020

Publication Date:
12 May 2020 (online)


Abstract

A ruthenium-catalyzed [5+1] annulation of 1-(2-aminophenyl)pyrroles with α-carbonyl sulfoxonium ylides is reported. This reaction provides a one-step method for synthesizing pyrrolo[1,2-a]quinoxaline derivatives under ambient conditions. The system proceeds with a short reaction time and a high functional-group tolerance. Notably, this divergent protocol tolerates β-keto sulfoxonium ylides and can be applied to α-ester sulfoxonium ylides. A preliminary study was made of the mechanism of the reaction, and a reaction pathway is proposed.

Supporting Information

 
  • References and Notes

    • 1a Campiani G, Aiello F, Fabbrini M, Morelli E, Ramunno A, Armaroli S, Nacci V, Garofalo A, Greco G, Novellino E, Maga G, Spadari S, Bergamini A, Ventura L, Bongiovanni B, Capozzi M, Bolacchi F, Marini S, Coletta M, Guiso G, Caccia S. J. Med. Chem. 2001; 44: 305
    • 1b Cogo J, Kaplum V, Sangi DP, Ueda-Nakamura T, Correa AG, Nakamura CV. Eur. J. Med. Chem. 2015; 90: 107
    • 1c Xia H.-Q, Kong C.-P, Wang J, Bai F.-Q, Zhang H.-X. RSC Adv. 2014; 4: 50338
    • 1d Gemma S, Colombo L, Forloni G, Savini L, Fracasso C, Caccia S, Salmona M, Brindisi M, Joshi BP, Tripaldi P, Giorgi G, Taglialatela-Scafati O, Novellino E, Fiorini I, Campiani G, Butini S. Org. Biomol. Chem. 2011; 9: 5137
    • 1e Butini S, Budriesi R, Hamon M, Morelli E, Gemma S, Brindisi M, Borrelli G, Novellino E, Fiorini I, Ioan P, Chiarini A, Cagnotto A, Mennini T, Fracasso C, Caccia S, Campiani G. J. Med. Chem. 2009; 52: 6946
    • 2a Guillon J, Grellier P, Labaied M, Sonnet P, Leger JM, Déprez-Poulain R, Forfar-Bares I, Dallemagne P, Lemaître N, Péhourcq F, Rochette J, Sergheraert C, Jarry C. J. Med. Chem. 2004; 47: 1997
    • 2b Guillon J, Moreau S, Mouray E, Sinou V, Forfar I, Fabre SB, Desplat V, Millet P, Parzy D, Jarry C, Grellier P. Bioorg. Med. Chem. 2008; 16: 9133
    • 3a Guillon J, Forfar I, Mamani-Matsuda M, Desplat V, Saliege M, Thiolat D, Massip S, Tabourier A, Leger J.-M, Dufaure B, Haumont G, Jarry C, Mossalayi D. Bioorg. Med. Chem. 2007; 15: 194
    • 3b Alleca S, Corona P, Loriga M, Paglietti G, Loddo R, Mascia V, Busonera B, La Colla P. Farmaco 2003; 58: 639
  • 4 Babu PV, Mukherjee S, Deora GS, Chennubhotla KS, Medisetti R, Yellanki S, Kulkarni P, Sripelly S, Parsa KV, Chatti K, Mukkanti K, Pal M. Org. Biomol. Chem. 2013; 11: 6680
  • 5 Guillon J, Dallemagne P, Pfeiffer B, Renard P, Manechez D, Kervran A, Rault S. Eur. J. Med. Chem. 1998; 33: 293
  • 6 Guillon J, Le Borgne M, Rimbault C, Moreau S, Savrimoutou S, Pinaud N, Baratin S, Marchivie M, Roche S, Bollacke A, Pecci A, Alvarez L, Desplat V, Jose J. Eur. J. Med. Chem. 2013; 65: 205
  • 7 Cheeseman GW. H, Tuck B. Chem. Ind. (London, U. K.) 1965; 1382
  • 8 Preetam A, Nath M. RSC Adv. 2015; 5: 21843
  • 9 Li J, Zhang J, Yang H, Gao Z, Jiang G. J. Org. Chem. 2017; 82: 765
  • 10 Xie C, Zhang Z, Li D, Gong J, Han X, Liu X, Ma C. J. Org. Chem. 2017; 82: 3491
    • 11a An Z, Zhao L, Wu M, Ni J, Qi Z, Yu G, Yan R. Chem. Commun. 2017; 53: 11572
    • 11b An Z, Jiang Y, Guan X, Yan R. Chem. Commun. 2018; 54: 10738
    • 11c Ni J, Jiang Y, Qi Z, Yan R. Chem. Asian J. 2019; 14: 2898
  • 12 Samala S, Arigela RK, Kant R, Kundu B. J. Org. Chem. 2014; 79: 2491
  • 13 Ingold CK, Jessop JA. J. Chem. Soc. 1930; 713
  • 14 Johnson AW, LaCount RB. J. Am. Chem. Soc. 1961; 83: 417
    • 15a Franzen V, Schmidt HJ, Mertz C. Chem. Ber. 1961; 94: 2942
    • 15b Franzen V, Driesen HE. Chem. Ber. 1963; 96: 1881
    • 16a Battiste MA. J. Am. Chem. Soc. 1962; 84: 3780
    • 16b Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1964; 86: 1640
    • 16c Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
  • 17 Barday M, Janot C, Halcovitch NR, Muir J, Aïssa C. Angew. Chem. Int. Ed. 2017; 56: 13117
  • 18 Hu S, Du S, Yang Z, Ni L, Chen Z. Adv. Synth. Catal. 2019; 361: 3124
  • 19 Chen P, Nan J, Hu Y, Ma Q, Ma Y. Org. Lett. 2019; 21: 4812
  • 20 Cui X.-F, Ban Z.-H, Tian W.-F, Hu F.-P, Zhou X.-Q, Ma H.-J, Zhan Z.-Z, Huang G.-S. Org. Biomol. Chem. 2019; 17: 240
    • 21a You C, Pi C, Wu Y, Cui X. Adv. Synth. Catal. 2018; 360: 4068
    • 21b Xu G.-D, Huang KL, Huang Z.-Z. Adv. Synth. Catal. 2019; 361: 3318
    • 21c Oh H, Han S, Pandey AK, Han SH, Mishra NK, Kim S, Chun R, Kim HS, Park J, Kim IS. J. Org. Chem. 2018; 83: 4070
    • 21d Liu CF, Liu M, Dong L. J. Org. Chem. 2019; 84: 409
    • 21e Xu Y, Zhou X, Zheng G, Li X. Org. Lett. 2017; 19: 5256
    • 21f Wu X, Xiong H, Sun S, Cheng J. Org. Lett. 2018; 20: 1396
    • 21g Hu P, Zhang Y, Xu Y, Yang S, Liu B, Li X. Org. Lett. 2018; 20: 2160
    • 21h Halskov KS, Witten MR, Hoang GL, Mercado BQ, Ellman JA. Org. Lett. 2018; 20: 2464
    • 21i Ji S, Yan K, Li B, Wang B. Org. Lett. 2018; 20: 5981
    • 21j Xie H, Lan J, Gui J, Chen F, Jiang H, Zeng W. Adv. Synth. Catal. 2018; 360: 3534
    • 21k Chen G, Zhang X, Jia R, Li B, Fan X. Adv. Synth. Catal. 2018; 360: 3781
    • 21l Liang Y.-F, Yang L, Rogge T, Ackermann L. Chem. Eur. J. 2018; 24: 16548
    • 21m Xie W, Chen X, Shi J, Li J, Liu R. Org. Chem. Front. 2019; 6: 2662
    • 21n Wen S, Chen Y, Zhao Z, Ba D, Lv W, Cheng G. J. Org. Chem. 2020; 85: 1216
    • 21o Cai L, Zhu X, Chen J, Yao A, Lin H. Org. Chem. Front. 2019; 6: 3688
  • 22 Phenyl(pyrrolo[1,2-a]quinoxalin-4-yl)methanone (3aa); Typical Procedure A Schlenk tube (20 mL) equipped with a stirrer bar was charged with 1-(2-aminophenyl)pyrroles (1a; 0.2 mmol, 31.6 mg), sulfoxonium ylide 2a (0.3 mmol, 58.8 mg), [RuCl2(p-cymene)]2 (2.5 mol%, 3.1 mg), and AgNTf2 (20 mol%, 15.5 mg) under an air atmosphere (1 atm). Anhyd t AmOH was added, and the mixture was stirred at 100 °C for 12 h, then cooled to r.t. The mixture was filtered through a short Celite pad, and the filtrate was concentrated. The residue was purified by column chromatography [silica gel, PE–EtOAc–CHCl3 (8:1:1)] to give a yellow solid; yield: 71%. 1H NMR (300 MHz, CDCl3): δ = 8.20–8.14 (m, 2 H), 8.04–7.99 (m, 2 H), 7.91 (d, J = 8.2 Hz, 1 H), 7.62 (m, 2 H), 7.49 (m, 3 H), 7.21 (d, J = 4.1 Hz, 1 H), 6.96 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 192.36, 149.90, 135.79, 134.73, 133.55, 131.06, 131.00, 129.40, 128.30, 127.92, 125.43, 124.34, 114.87, 114.72, 113.85, 108.86. HRMS (ESI): m/z [M + H]+ calcd for C18H13N2O: 273.1023; found: 273.0939.