Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T07:33:29.448Z Has data issue: false hasContentIssue false

SMALL-WORLD EFFECT IN GEOGRAPHICAL ATTACHMENT NETWORKS

Published online by Cambridge University Press:  12 September 2019

Qunqiang Feng
Affiliation:
Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, 230026, China E-mails: fengqq@ustc.edu.cn; tjwyk@mail.ustc.edu.cn; huzs@ustc.edu.cn
Yongkang Wang
Affiliation:
Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, 230026, China E-mails: fengqq@ustc.edu.cn; tjwyk@mail.ustc.edu.cn; huzs@ustc.edu.cn
Zhishui Hu
Affiliation:
Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, 230026, China E-mails: fengqq@ustc.edu.cn; tjwyk@mail.ustc.edu.cn; huzs@ustc.edu.cn

Abstract

In this work, we use rigorous probabilistic methods to study the asymptotic degree distribution, clustering coefficient, and diameter of geographical attachment networks. As a type of small-world network model, these networks were first proposed in the physical literature, where they were analyzed only with heuristic arguments and computational simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Athreya, K.B. & Ney, P.E. (1972). Branching processes. Berlin: Springer-Verlag.CrossRefGoogle Scholar
2.Azuma, K. (1967). Weighted sums of certain dependent variables. Tohoku Mathematical Journal 3: 357367.Google Scholar
3.Bartle, R.G. & Sherbert, D.R. (2011). Introduction to Real analysis (4th ed.). USA: John Wiley & Sons.Google Scholar
4.Bellman, R. & Harris, T.E. (1948). On the theory of age-dependent stochastic branching processes. Proceedings of the National Academy of Sciences of the United States of America 34: 601604.CrossRefGoogle ScholarPubMed
5.Bhamidi, S., Steele, J.M., & Zaman, T. (2015). Twitter event networks and the superstar model. The Annals of Applied Probability 25: 24622502.CrossRefGoogle Scholar
6.Bilke, S. & Peterson, C. (2001). Topological properties of citation and metabolic networks. Physical Review E 64: 036106.CrossRefGoogle ScholarPubMed
7.Bollobás, B., Riordan, O., Spencer, J., & Tusnády, G. (2001). The degree sequence of a scale-free random graph process. Random Structures and Algorithms 18: 279290.CrossRefGoogle Scholar
8.Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., & Wiener, J. (2000). Graph structure in the web. Computer Networks 33: 309320.CrossRefGoogle Scholar
9.Broutin, N. & Devroye, L. (2006). Large deviations for the weighted height of an extended class of trees. Algorithmica 46: 271297.CrossRefGoogle Scholar
10.Ebrahimzadeh, E., Farczadi, L., Gao, P., Mehrabian, A., Sato, C.M., Wormald, N., & Zung, J. (2014). On the longest paths and diameter in random Apollonian networks. Random Structures and Algorithms 45: 703725.CrossRefGoogle Scholar
11.Eggenberger, F. & Pólya, G. (1923). Über die statistik verketteter vorgäge. Zeitschrift für Angewandte Mathematik und Mechanik 3: 279289.CrossRefGoogle Scholar
12.Frieze, A. & Tsourakakis, C.E. (2012). On certain properties of random Apollonian networks. In Algorithms and Models for the Web Graph. Springer, Berlin, pp. 93112.CrossRefGoogle Scholar
13.Hayashi, Y. (2006). A review of recent studies of geographical scale-free networks. IPSJ Digital Courier 2: 155164.CrossRefGoogle Scholar
14.Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58: 1330.CrossRefGoogle Scholar
15.Kleinberg, J.M. (2000). The small-world phenomenon: An algorithmic perspective. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. Association of Computing Machinery, New York, pp. 163170.Google Scholar
16.Kolossváry, I., Komjáthy, J., & Vágó, L. (2016). Degrees and distances in random and evolving apollonian networks. Advances in Applied Probability 48: 865902.CrossRefGoogle Scholar
17.Mahmoud, H. (2008). Pólya urn models. Boca Raton: Chapman & Hall/CRC.CrossRefGoogle Scholar
18.Milgram, S. (1967). The small world problem. Psychology Today 1: 6067.Google Scholar
19.Moore, C. & Newman, M.E.J. (1999). Epidemics and percolation in small-world networks. Physical Review E 61: 56785682.CrossRefGoogle Scholar
20.Newman, M.E.J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the USA 98: 404409.CrossRefGoogle ScholarPubMed
21.Newman, M.E.J. (2003). The structure and function of complex networks. SIAM Review 45: 167256.CrossRefGoogle Scholar
22.Newman, M.E.J. & Watts, D.J. (1999). Renormalization group analysis of the small-world network model. Physics Letters A 263: 341346.CrossRefGoogle Scholar
23.Ozik, J., Hunt, B.R., & Ott, E. (2004). Growing networks with geographical attachment preference: Emergence of small worlds. Physical Review E 69: 026108.CrossRefGoogle ScholarPubMed
24.Pittel, B. (1994). Note on the heights of random recursive trees and random m-ary search trees. Random Structures and Algorithms 5: 337347.CrossRefGoogle Scholar
25.Van der Hofstad, R. (2018). Random graphs and complex networks: Volume II. Unpublished manuscript. http://www.win.tue.nl/rhofstad/NotesRGCNII.pdf.Google Scholar
26.Van Noort, V., Snel, B., & Huynen, M.A. (2004). The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Reports 5: 280284.CrossRefGoogle Scholar
27.Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
28.Watts, D.J. & Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393: 440442.CrossRefGoogle ScholarPubMed
29.Wu, J., Tse, C.K., Lau, F.C.M., & Ho, I.W.H. (2013). Analysis of communication network performance from a complex network perspective. IEEE Transactions on Circuits and Systems 60: 33033316.CrossRefGoogle Scholar
30.Zaidi, F. (2013). Small world networks and clustered small world networks with random connectivity. Social Network Analysis and Mining 3: 5163.CrossRefGoogle Scholar
31.Zhang, Z., Rong, L., & Comellas, F. (2006). Evolving small-world networks with geographical attachment preference. Journal of Physics A: Mathematical and General 39: 32533261.CrossRefGoogle Scholar
32.Zhang, Z., Rong, L., & Guo, C. (2006). A deterministic small-world network created by edge iterations. Physica A 363: 567572.CrossRefGoogle Scholar
33.Zhou, T., Yan, G., & Wang, B.-H. (2005). Maximal planar networks with large clustering coefficient and power-law degree distribution. Physical Review E 71: 046141.CrossRefGoogle ScholarPubMed