Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T15:50:44.864Z Has data issue: false hasContentIssue false

Conditional symmetries and exact solutions of a nonlinear three-component reaction-diffusion model

Published online by Cambridge University Press:  11 May 2020

R. M. CHERNIHA
Affiliation:
Institute of Mathematics, NAS of Ukraine, 3 Tereshchenkivs’ka Street, 01004 Kyiv, Ukraine, emails: r.m.cherniha@gmail.com; davydovych@imath.kiev.ua
V. V. DAVYDOVYCH
Affiliation:
Institute of Mathematics, NAS of Ukraine, 3 Tereshchenkivs’ka Street, 01004 Kyiv, Ukraine, emails: r.m.cherniha@gmail.com; davydovych@imath.kiev.ua

Abstract

Q-conditional (non-classical) symmetries of the known three-component reaction-diffusion (RD) system [K. Aoki et al. Theor. Popul. Biol. 50, 1–17 (1996)] modelling interaction between farmers and hunter-gatherers are constructed for the first time. A wide variety of Q-conditional symmetries are found, and it is shown that these symmetries are not equivalent to the Lie symmetries. Some operators of Q-conditional (non-classical) symmetry are applied for finding exact solutions of the RD system in question. Properties of the exact solutions (in particular, their asymptotic behaviour) are identified and possible biological interpretation is discussed.

Type
Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allassia, F. & Nucci, M. C. (1996) Symmetries and heir equations for the laminar boundary layer model. J. Math. Anal. Appl. 201, 911942.CrossRefGoogle Scholar
Aoki, K., Shida, M. & Shigesada, N. (1996) Travelling wave solutions for the spread of farmers into a region occupied by hunter-gatherers. Theor. Popul. Biol. 50, 117.CrossRefGoogle ScholarPubMed
Arrigo, D. J., Ekrut, D. A., Fliss, J. R. & Le, L. (2010) Nonclassical symmetries of a class of Burgers’ systems. J. Math. Anal. Appl. 371, 813820.CrossRefGoogle Scholar
Arrigo, D. J., Hill, J. M. & Broadbridge, P. (1994) Nonclassical symmetries reductions of the linear diffusion equation with a nonlinear source. IMA J. Appl. Math. 52, 124.CrossRefGoogle Scholar
Arrigo, D. J. & Weaver, A. N. (2018) Nonclassical symmetries of a power law Harry Dym equation. Symmetry 10, 100.CrossRefGoogle Scholar
Barannyk, T. (2002) Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations. Proc. Inst. Math. Nat. Acad. Sci. Ukraine 43, 8085.Google Scholar
Bluman, G. W., Cheviakov, A. F. & Anco, S. C. (2010) Applications of Symmetry Methods to Partial Differential Equations, Springer, New York.CrossRefGoogle Scholar
Bluman, G. W. & Cole, J. D. (1969) The general similarity solution of the heat equation. J. Math. Mech. 18, 10251042.Google Scholar
Cherniha, R. (2010) Conditional symmetries for systems of PDEs: new definition and their application for reaction-diffusion systems. J. Phys. A: Math. Theor. 43, 405207.CrossRefGoogle Scholar
Cherniha, R. & Davydovych, V. (2011) Conditional symmetries and exact solutions of the diffusive Lotka–Volterra system. Math. Comput. Modell. 54, 12381251.CrossRefGoogle Scholar
Cherniha, R. & Davydovych, V. (2013) Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system. J. Phys. A: Math. Theor. 46, 185204 (14 pp).CrossRefGoogle Scholar
Cherniha, R. & Davydovych, V. (2015) Nonlinear reaction-diffusion systems with a non-constant diffusivity: conditional symmetries in no-go case. Appl. Math. Comput. 268, 2334.Google Scholar
Cherniha, R. & Davydovych, V. (2017) Nonlinear Reaction-Diffusion Systems — Conditional Symmetry, Exact Solutions and Their Applications in Biology. Lecture Notes in Mathematics, Vol. 2196, Springer, Cham.CrossRefGoogle Scholar
Cherniha, R. & Davydovych, V. (2019) A hunter-gatherer-farmer population model: Lie symmetries, exact solutions and their interpretation. Euro. J. Appl. Math. 30, 338357.CrossRefGoogle Scholar
Cherniha, R. & Davydovych, V. (2020) Exact solutions of a mathematical model describing competition and co-existence of different language speakers. Entropy, 22, 154. doi: https://doi.org/10.3390/e22020154.CrossRefGoogle Scholar
Cherniha, R. & Pliukhin, O. (2008) New conditional symmetries and exact solutions of reaction-diffusion systems with power diffusivities. J. Phys. A: Math. Theor. 41, 185208.CrossRefGoogle Scholar
Cherniha, R. & Serov, M. (2003) Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansatze and solutions. J. Math. Anal. Appl. 282, 305328.CrossRefGoogle Scholar
Cherniha, R., Serov, M. & Pliukhin, O. (2018) Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications, Chapman and Hall/CRC, New York.Google Scholar
Clarkson, P. A. & Mansfield, E. L. (1994) Symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys. D 70, 250288.CrossRefGoogle Scholar
Fokas, A. S. & Liu, Q. M. (1994) Generalized conditional symmetries and exact solutions of non-integrable equations. Theor. Math. Phys. 99, 571582.CrossRefGoogle Scholar
Fushchych, W. I., Shtelen, W. M. & Serov, M. I. (1993) Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer, Dordrecht.CrossRefGoogle Scholar
Ji, L. N. & Qu, C. Z. (2014) Conditional Lie-Bäcklund symmetry of evolution system and application for reaction-diffusion system. Stud. Appl. Math. 133, 118149.CrossRefGoogle Scholar
Kandler, A. & Unger, R. (2018) Modeling language shift. In: Bunde, A., Caro, J., Kärger, J., Vogl, G. (editors), Diffusive Spreading in Nature, Technology and Society, Springer 351373.CrossRefGoogle Scholar
Kandler, A., Unger, R. & Steele, J. (2010) Language shift, bilingualism and the future of Britain’s Celtic languages. Phil. Trans. R. Soc. B 365, 38553864.CrossRefGoogle ScholarPubMed
Levi, D., Rodriguez, M. A. & Thomova, Z. (2019) Differential equations invariant under conditional symmetries. J. Nonlinear Math. Phys. 26, 281293.CrossRefGoogle Scholar
Levi, D. & Winternitz, P. (1989) Non-classical symmetry reduction: example of the Boussinesq equation. J. Phys. A: Math. Gen. 22, 2915.CrossRefGoogle Scholar
Murata, S. (2006) Non-classical symmetry and Riemann invariants. Int. J. Non-Linear Mech. 41, 242246.CrossRefGoogle Scholar
Nucci, M. C. (1996) Iterations of the non-classical symmetries method and conditional Lie-Bäcklund symmetries. J. Phys. A: Math. Gen. 29, 81178122.CrossRefGoogle Scholar
Nucci, M. C. & Clarkson, P. A. (1992) The nonclassical method is more general than the direct method for symmetry reductions. An example of the Fitzhugh–Nagumo equation. Phys. Lett. A 164, 4956.CrossRefGoogle Scholar
Olver, P. (1986) Applications of Lie Groups to Differential Equations, Springer, Berlin.CrossRefGoogle Scholar
Olver, P. J. & Rosenau, P. (1987) Group-invariant solutions of differential equations. SIAM J. Appl. Math. 47, 263278.CrossRefGoogle Scholar
Ovsiannikov, L. V. (1980) The Group Analysis of Differential Equations, Academic Press, New York.Google Scholar
Polyanin, A. D. & Zaitsev, V. F. (2003) Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press Company, London.Google Scholar
Saccomandi, G. (2005) A personal overview on the reduction methods for partial differential equations. Note di Matematica 23, 217248.Google Scholar
Serov, N. I. (1990) Conditional invariance and exact solutions of the nonlinear equation. Ukr. Math. J. 42, 12161222.CrossRefGoogle Scholar
Straughan, B. (2014) Shocks and acceleration waves in modern continuum mechanics and in social systems. Evol. Equat. Contr. Theor. 3, 541555.CrossRefGoogle Scholar
Torrisi, M. & Tracina, R. (2011) Exact solutions of a reaction-diffusion system for Proteus mirabilis bacterial colonies. Nonlinear Anal. Real World Appl. 12, 18651874.CrossRefGoogle Scholar
Wang, J. P. & Ji, L. N. (2015) Conditional Lie-Bäcklund symmetry, second-order differential constraint and direct reduction of diffusion systems. J. Math. Anal. Appl. 427, 11011118.CrossRefGoogle Scholar
Zhdanov, R. Z. (1995) Conditional Lie-Bäcklund symmetry and reduction of evolution equations. J. Phys. A: Math. Gen. 28, 38413850.CrossRefGoogle Scholar
Zhdanov, R. Z., Tsyfra, I. M. & Popovych, R. O. (1999) A precise definition of reduction of partial differential equations. J. Math. Anal. Appl. 238, 101123.CrossRefGoogle Scholar