Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T02:50:01.172Z Has data issue: false hasContentIssue false

Spatial and temporal variation in the migration of Ruddy-headed Goose in southern South America using satellite tagging

Published online by Cambridge University Press:  30 April 2020

JULIETA PEDRANA*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Recursos Naturales y Gestión Ambiental, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria (EEA) Balcarce, Ruta 226 km 73.5 (7620), Balcarce, Argentina.
KLEMENS PÜTZ
Affiliation:
Antarctic Research Trust, Am Oste-Hamme-Kanal 10, 27432 Bremervörde, Germany
LUCÍA BERNAD
Affiliation:
Recursos Naturales y Gestión Ambiental, INTA EEA Balcarce, Ruta 226 km 73.5 (7620), Balcarce, Argentina.
SEBASTIÁN MUÑOZ
Affiliation:
Recursos Naturales y Gestión Ambiental, INTA EEA Balcarce, Ruta 226 km 73.5 (7620), Balcarce, Argentina.
ANTONELLA GOROSÁBEL
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Recursos Naturales y Gestión Ambiental, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria (EEA) Balcarce, Ruta 226 km 73.5 (7620), Balcarce, Argentina.
GABRIEL CASTRESANA
Affiliation:
Organismo Provincial de Desarrollo Sostenible (OPDS), Calle 12 y 53 Torre II Piso 14, (1900) La Plata, Argentina.
ALEJANDRO LEISS
Affiliation:
Organismo Provincial de Desarrollo Sostenible (OPDS), Calle 12 y 53 Torre II Piso 14, (1900) La Plata, Argentina.
JUAN PABLO SECO PON
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Funes 3250 (7600) Mar del Plata, Argentina.
*
*Author for correspondence; email: pedrana.julieta@inta.gob.ar

Summary

Ruddy-headed Goose Chloephaga rubidiceps is the smallest of the five South American sheldgeese and has two separate populations: one sedentary, which resides in the Malvinas/Falkland Islands and one migratory that overwinters mainly in the Pampas region, Argentina and breeds in Southern Patagonia. The Ruddy-headed Goose’s continental population has decreased considerably, and recent estimates indicated that the population size is less than 800 individuals. In Argentina and Chile, this population is categorised as endangered. Understanding migration across vast landscapes is essential for the identification of factors affecting the survival of this endangered population and for the application of effective conservation measures. We aim to provide the first documentation of the complete migration cycle of Ruddy-headed Goose, and to analyse their annual migration in detail, including identification of stop-over, breeding and wintering sites, and to compare migration timing during spring and autumn migration. Adults were captured in the southern Pampas and equipped with solar satellite transmitters in 2015 and 2016. We analysed the influence of season (spring vs autumn migration) on the number and duration of stop-overs, distance travelled and overall migration speed using Generalized Linear Mixed Models. Our results showed that tracked geese used the eastern Patagonian route to reach their breeding grounds and take the same route after breeding. Spring migration was significantly faster than autumn migration, at least based on the number of days spent in their stop-overs. Stop-overs were closer to the final destination, either during spring and autumn migrations, though some of them were not used during subsequent migrations. Our migration cartography for Ruddy-headed Geese, together with the timing and location data, should be used to improve conservation efforts directed at this species and might contribute to the modification of the current status of ‘Least Concern’ under the IUCN criteria.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Birdlife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AA/AOP and DFS/SAyDS (2017) Categorización de las aves de la Argentina según su estado de conservación. Buenos Aires, Argentina: Aves Argentinas /AOP and Secretaría de Ambiente y Desarrollo Sustentable.Google Scholar
Alerstam, T. and Hedenström, A. (1998) The development of bird migration theory. J. Avian Biol. 29: 343369.CrossRefGoogle Scholar
Alerstam, T. and Lindström, A. (1990) Optimal bird migration: The relative importance of time, energy, and safety. Pp. 331351 in Gwinner, E., ed. Bird migration. Berlin: Springer.CrossRefGoogle Scholar
ARGOS, S. (2016) Argos user’s manual. © 2007-2016 CLS.Google Scholar
Baldi, G. and Paruelo, J. M. (2008) Land-use and land cover dynamics in South American temperate grasslands. Ecol. Soc. 13: 6.CrossRefGoogle Scholar
Berger, J. (2004) The last mile: How to sustain long-distance migration in mammals. Conserv. Biol.18: 320331.CrossRefGoogle Scholar
Berthold, P., Gwinner, E. and Sonnenschein, E. (2003) Avian migration. Berlin, Germany: Springer.CrossRefGoogle Scholar
BirdLife International (2016) Chloephaga rubidiceps. IUCN Red List for birds. http://www.birdlife.org (accessed on 26 July 2019).Google Scholar
Blanco, D. E. and de la Balze, V. M. (2006) Harvest of migratory geese (Chloephaga spp.) in Argentina: an overview of the present situation. Pp. 870873 in Boere, G. C., Galbraith, C. A. and Stroud, D. A., eds. Waterbirds around the world: a global overview of the conservation, management and research of the world´s waterbird flyways. Edinburg, UK: The Stationery Office.Google Scholar
Blanco, D. E., Zalba, S. M., Belenguer, C. J., Pugnali, G. and Rodríguez Goñi, H. (2003) Status and conservation of the ruddy-headed goose Chloephaga rubidiceps Sclater (Aves, Anatidae) in its wintering grounds (Province of Buenos Aires, Argentina). Revista Chilena de Historia Natural 76: 4755.CrossRefGoogle Scholar
Bulgarella, M., Kopuchian, C., Di Giacomo, A. S., Matus, R., Blank, O., Wilson, R. E. and McCracken, K. G. (2014) Molecular phylogeny of the South American sheldgeese with implications for conservation of Falkland Islands (Malvinas) and continental populations of the Ruddy-headed Goose Chloephaga rubidiceps and Upland Goose C. picta. Bird Conserv. Internatn. 24: 5971.CrossRefGoogle Scholar
Carboneras, C. (1992) Family Anatidae. Pp. 536628 in Del Hoyo, J., Elliott, A. and Sargatal, J., eds. Handbook of the birds of the world 1. Barcelona, Spain: Lynx Edicions.Google Scholar
Casper, R. M. (2009) Guidelines for the instrumentation of wild birds and mammals. Anim. Behav. 78: 14771483.CrossRefGoogle Scholar
Clausen, K. K., Christensen, T. K., Gundersen, O. M. and Madsen, J. (2017) Impact of hunting along the migration corridor of pink-footed geese Anser brachyrhynchus- implications for sustainable harvest management. J. Appl. Ecol. 54: 15631570.CrossRefGoogle Scholar
Clausen, K. K., Madsen, J., Cottaar, F., Kuijken, E. and Verscheure, C. (2018) Highly dynamic wintering strategies in migratory geese: Coping with environmental change. Global Change Biol. 24: 32143225.CrossRefGoogle ScholarPubMed
CONAMA (2009) Especies Amenazadas de Chile. Santiago, Chile: Comisión Nacional del Medio Ambiente, Departamento demProtección de los Recursos Naturales.Google Scholar
Cooke, S. J. (2008) Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endangered Species Res. 4: 165185.CrossRefGoogle Scholar
Cope, D. R., Vickery, J. A. and Rowcliffe, J. M. (2006) From conflict to coexistence: a case study of geese and agriculture in Scotland. Pp. 791794 in Boere, G. C., Galbraith, C. A. and Stroud, D. A., eds. Waterbirds around the world. Edinburgh, UK: The Stationery Office.Google Scholar
Cossa, N. A., Fasola, L., Roesler, I. and Reboreda, J. C. (2017) Ruddy-headed Goose Chloephaga rubidiceps: former plague and present protected species on the edge of extinction. Bird Conserv. Internatn. 27: 269281.CrossRefGoogle Scholar
Cossa, N. A., Fasola, L., Roesler, I. and Reboreda, J. C. (2018) Incubating Upland Goose (Chloephaga picta) differential response to livestock, human, and predator nest disturbance. Wilson J. Ornithol. 130: 739745.CrossRefGoogle Scholar
Devenish, C., Díaz Fernandez, D. F., Clay, R. P., Davidson, I. and Zabala Yépez, I. (2009) Important Bird Areas of the Americas - Priority sites for biodiversity conservation. Quito, Ecuador: BirdLife International.Google Scholar
Drent, R., Both, C., Green, M., Madsen, J. and Piersma, T. (2003) Pay-offs and penalties of competing migratory schedules. Oikos 103: 274292.CrossRefGoogle Scholar
Farmer, A. H. and Wiens Farmer, J. A. (1998) Optimal migration schedules depend on the landscape and the physical environment: a dynamic modeling view. J. Avian Biol. 29: 405415.CrossRefGoogle Scholar
Fox, A. D., J. Elmberg, Tombre, I., and Hessel, R.. (2017) Agriculture and herbivorous waterfowl: A review of the scientific basis for improved management. Biol. Rev. Cambridge Phil. Soc. 92: 854877.Google Scholar
Gall, M. D., Hough, L. D. and Fernández-Juricic, E. (2013) Age-related characteristics of foraging habitats and foraging behaviors in the Black Phoebe (Sayornis nigricans). The Southwestern Naturalist 58: 4149.CrossRefGoogle Scholar
Gannes, L. Z. (2002) Mass change pattern of blackcaps refueling during spring migration: evidence for physiological limitations to food assimilation. The Condor 104: 231239.CrossRefGoogle Scholar
Giunchi, D., Baldaccini, N.E., Lenzoni, A., Luschi, P., Sorrenti, M., Cerritelli, G. and Vanni, L. (2019) Spring migratory routes and stop-over duration of satellite-tracked Eurasian Teals Anas crecca wintering in Italy. Ibis 161: 117130.CrossRefGoogle Scholar
González-Prieto, A. M., Bayly, N. J., Colorado, G. J. and Hobson, K. A. (2016) Topography of the Andes Mountains shapes the wintering distribution of a migratory bird. Divers. Distrib. 23: 118129.CrossRefGoogle Scholar
Goymann, W., Spina, F., Ferri, A. and Fusani, L. (2010) Body fat influences departure from stop-over sites in migratory birds: evidence from whole-island telemetry. Biol. Lett. 6: 478481.CrossRefGoogle Scholar
Goymann, W., Lupi, S., Kaiya, H., Cardinale, M. and Fusani, L. (2017) Ghrelin affects stop-over decisions and food intake in a long-distance migrant. Proc. Natl. Ac. Sci. 114: 19461951.CrossRefGoogle Scholar
Green, M., Alerstam, T., Clausen, P., Drent, R. and Ebbinge, B. S. (2002) Site use by dark-bellied brent geese Branta bernicla bernicla on the Russian tundra as recorded by satellite telemetry: implications for East Atlantic Fly way conservation. Wildl. Biol. 8: 229239.CrossRefGoogle Scholar
Hedenström, A. and Alerstam, T. (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J. Theoret. Biol. 189: 227234.CrossRefGoogle ScholarPubMed
Heise, C. D. and Moore, F. R. (2003) Age-related differences in foraging efficiency, molt, and fat deposition of gray catbirds prior to autumn migration. The Condor 105: 496504.CrossRefGoogle Scholar
Helbig, A. J. (2003) Evolution of bird migration: a phylogenetic and biogeographic perspective. Pp. 320 in Berthold, P., Gwinner, E. and Sonnenschein, E., eds. Avian migration. Berlin, Germany: Springer.CrossRefGoogle Scholar
Hübner, C. E., Tombre, I. M., Griffin, L. R., Loonen, M. J. J. E., Shimmings, P. and Jónsdóttir, I. S. (2010) The connectivity of spring stop-over sites for geese heading to arctic breeding grounds. Ardea 98: 145154.CrossRefGoogle Scholar
Humphrey, J. S. and Avery, M. L. (2014) Improved satellite transmitter harness attachment technique. USDA National Wildlife Research Center - Staff Publications.CrossRefGoogle Scholar
Hutto, R. L. (1998). On the importance of stop-over sites to migrating birds. The Auk 115: 823825.CrossRefGoogle Scholar
Jenni, L. and Schaub, M. (2003) Behavioural and physiological reactions to environmental variation in bird migration: a review. Pp. 155171 in Berthold, P., Gwinner, E. and Sonnenschein, E., eds. Avian migration. Berlin, Germany: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Jonker, R. M., Kraus, R. H. S., Zhang, Q., van Hooft, P., Larsson, K., van der Jeugd, H. P. et al. (2013) Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis. Mol. Ecol. 22: 58355847.CrossRefGoogle ScholarPubMed
Kölzsch, A., Müskens, G. J. D. M., Kruckenberg, H., Glazov, P., Weinzierl, R., Nolet, B. A. and Wikelski, M. (2016) Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stop-over use and departure. Oikos 125: 14961507.CrossRefGoogle Scholar
Köppen, U., Yakovlev, A. P., Barth, R., Kaatz, M. and Berthold, P. (2010) Seasonal migrations of four individual bar-headed geese from Kyrgyzstan followed by satellite telemetry. J. für Ornithol. 151: 703712.CrossRefGoogle Scholar
Kopuchian, C., Campagna, L., Di Giacomo, A. S., Wilson, R. E., Bulgarella, M., Petracci, P., et al. (2016) Demographic history inferred from genome-wide data reveals two lineages of sheldgeese endemic to a glacial refugium in the southern Atlantic. J. Biogeogr. 43: 19791989.CrossRefGoogle Scholar
Krause, J. and Ruxton, G. D. (2002) Living in groups. Oxford, UK: Oxford University Press.Google Scholar
Lameris, T. K., Scholten, I., Bauer, S., Cobben, M. M. P., Ens, B. J. and Nolet, B. A. (2017) Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Global Change Biol. 23: 40584067.CrossRefGoogle ScholarPubMed
Li, S., Meng, W., Liu, D., Yang, Q., Chen, L., Dai, Q., et al. (2018) Migratory Whooper Swans Cygnus cygnus transmit h5n1 virus between China and Mongolia: combination evidence from satellite tracking and phylogenetics analysis. Scientific Reports 8: 7049.CrossRefGoogle ScholarPubMed
Long, P. R., Székely, T., Kershaw, M. and O’Connell, M. (2007) Ecological factors an human threats both drive wildfowl population declines. Anim. Conserv. 10: 183191.CrossRefGoogle Scholar
Lucero, M. M. (1992) Nuevos aportes al conocimiento migratorio de Chloephaga picta (Gmelin) en la República Argentina. Acta Zool. Lilloana 42: 165170.Google Scholar
Madsen, J. (1993) Experimental wildlife reserves in Denmark: a summary of results Experimental wildlife reserves in Denmark: a summary of results. Wader Study Group Bull. 68: 2328.Google Scholar
MacMillan, D., Hanley, N. and Daw, M. (2004) Costs and benefits of wild goose conservation in Scotland. Biol. Conserv. 119: 475485.CrossRefGoogle Scholar
Madsen, N. J., Blank, O., Benegas, L., Mateazzi, G., De Blanco, D. and Matus, R. (2003) Population status of the Ruddy-head Goose (Chloephaga rubidiceps) in Tierra del Fuego and Mainland Patagonia (Chile and Argentina). Ornitol. Neotrop. 14: 1528.Google Scholar
Matus, R. and Blank, O. (2017) Protocolo de cria en cautiverio y liberación de Canquén Colorado para fines de conservación. Santiago de Chile,Chile: ID N°608897-108-LE14, Ministerio del Medio Ambiente, Chile.Google Scholar
Monti, F., Grémillet, D., Sforzi, A., Dominici, J. M., Bagur, R. T., Navarro, A. M. et al. (2018) Migration distance affects stop-over use but not travel speed: contrasting patterns between long- and short-distance migrating ospreys. J. Avian Biol. 49: 10CrossRefGoogle Scholar
Moore, F. and Kerlinger, P. (1987) Stop-over and fat deposition by North American wood-warblers (Parulinae) following spring migration over the Gulf of Mexico. Oecologia 74: 4754.CrossRefGoogle Scholar
Myers, J. P. (1983) Conservation of migrating shorebirds: staging areas, geographic bottlenecks, and regional movements. American Birds 37: 2325.Google Scholar
Narosky, T. and Yzurieta, D. (2010) Aves de Argentina y Uruguay, Guía de Identificación. Buenos Aires, Argentina: Vazquez Mazzini Editores.Google Scholar
Newton, I. (2007) Population limitation in birds: The last 100 years. British Birds 100: 518539.Google Scholar
Newton, I. (2008) The migration ecology of birds. London, UK: Academic Press.Google Scholar
Nilsson, C., Klaassen, R. H. G. and Alerstam, T. (2013) Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181: 837845.CrossRefGoogle ScholarPubMed
Oesterheld, M., Aguiar, M. R. and Paruelo, J. M. (1998) Ecosistemas patagónicos. Ecología Austral 8: 7584.Google Scholar
Paruelo, J. M., Beltran, A., Jobbagy, E., Sala, O. E. and Golluscio, R. A. (1998) The climate of Patagonia: General patterns and controls on biotic processes. Ecologia Austral 8: 85101.Google Scholar
Pedrana, J., Bernad, L., Maceira, N. O. and Isacch, J. P. (2014) Human-sheldgeese conflict in agricultural landscapes: Effects of environmental and anthropogenic predictors on Sheldgeese distribution in the southern Pampa, Argentina. Agricult. Ecosyst. Environ. 183: 3139.CrossRefGoogle Scholar
Pedrana, J., Seco Pon, J. P., Isacch, J. P., Leiss, A., Rojas, O. P., Castresana, G. et al. (2015) First insights into the migration pattern of an Upland Goose (Chloephaga picta ) based on satellite tracking. Ornitol. Neotrop. 26: 245253.Google Scholar
Pedrana, J., Bernad, L., Bernardos, J. N., Seco Pon, J. P., Isacch, J. P., Muñóz, S. D., et al. (2018a) Winter population size estimations of three migratory sheldgeese in the Southern Pampas, Argentina. Waterbirds 41: 1621.CrossRefGoogle Scholar
Pedrana, J., Seco Pon, J. P., Pütz, K., Bernad, L., Gorosabel, A., Muñoz, S. D., et al. (2018b) Migration routes and stop-over sites of Upland Geese Chloephaga picta in South America. Avian Biol. Res. 11: 8999.CrossRefGoogle Scholar
Pergolani de Costa, M. J. I. (1955) Las avutardas. Especies que dañan a los cereales y las pasturas. IDIA 88: 19.Google Scholar
Plotnick, R. (1961) La avutarda de pecho rayado. IDIA 157: 922.Google Scholar
Quintana, F., López, G. and Somoza, G. (2008) A cheap and quick method for DNA-based sexing of birds. Waterbirds 31: 485488.CrossRefGoogle Scholar
Team, R Development Core (2017) R: a language for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Robinson, W. D., Bowlin, M. S., Bisson, I., Shamoun- Baranes, J Thorup, Diehl, K., R, H., et al. (2009) Integrating concepts and technologies to advance the study of bird migration. Front. Ecol. Environ. 8: 354361.CrossRefGoogle Scholar
Rumboll, M., Capllonch, P., Lobo, R. and Punta, G. (2005) Sobre el anillado de aves en la Argentina: recuperaciones y recapturas. Nuestras Aves 50: 2124.Google Scholar
Ruth, J. M., Barrow, W. C., Sojda, R. S., Dawson, D. K., Diehl, R. H., Manville, A., et al. (2005) Advancing migratory bird conservation and management by using radar: An interagency collaboration. U.S. Geological Survey, Biological Resources Discipline, Open-File Report.CrossRefGoogle Scholar
Shamoun-Baranes, J., Baharad, A., Alpert, P., Berthold, P., Yom-Tov, Y., Dvir, Y. and Leshem, Y. (2003) The effect of wind, season and latitude on the migration speed of White Storks Ciconia ciconia, along the Eastern Migration Route. J. Avian Biol. 34: 97104.CrossRefGoogle Scholar
Shamoun-Baranes, J., Bouten, W. and Emiel Van Loon, E. (2010) Integrating meteorology into research on migration. Integrative and Comparative Biol. 50: 280292.CrossRefGoogle ScholarPubMed
Shariati-Najafabadi, M., Darvishzadeh, R., Skidmore, A. K., Kölzsch, A., Exo, K. M., Nolet, B. A., et al. (2016) Environmental parameters linked to the last migratory stage of barnacle geese en route to their breeding sites. Anim. Behav. 118: 8195.CrossRefGoogle Scholar
Si, Y., Xu, Y., Xu, F., Li, X., Zhang, W., Wielstra, B., et al. (2018) Spring migration patterns, habitat use, and stop-over site protection status for two declining waterfowl species wintering in China as revealed by satellite tracking. Ecol. Evol. 8: 62806289.CrossRefGoogle Scholar
Soriano, A. (1991) Río de la Plata Grasslands. Pp. 367407 in Coupland, R. T., ed. Natural grasslands, introduction and Western Hemisphere. Amsterdam, Netherlands: Elsevier.Google Scholar
Stafford, J. D., Janke, A. K., Anteau, M. J., Pearse, A. T., Fox, A. D., Elmberg, J., Straub, J. N., Eichholz, M. W. and Arzel, C. (2014). Spring migration of waterfowl in the northern hemisphere: a conservation perspective. Wildfowl 4: 7085.Google Scholar
Summers, R. W. and McAdam, J. H. (1993) The Upland Goose: A study of the interaction between geese, sheep and man in the Falkland Islands. Huntingdon, UK: Bluntisham Books.Google Scholar
Tombre, I. M., Eythórsson, E. and Madsen, J. (2013) Towards a solution to the goose-agriculture conflict in North Norway, 1988–2012: The interplay between policy, stakeholder influence and goose population dynamics. PLoS ONE 8(8): e71912.CrossRefGoogle ScholarPubMed
van Wijk, R. E., Kölzsch, A., Kruckenberg, H., Ebbinge, B. S., Müskens, G. J. D. M. and Nolet, B. A. (2012) Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121: 655664.CrossRefGoogle Scholar
Vansteelant, W. M. G., Bouten, W., Klaassen, R. H. G., Koks, B. J., Schlaich, A. E., van Diermen, J., et al. (2015) Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46: 2539.CrossRefGoogle Scholar
Viana, D. S., Santamar, L., Michot, T. C. and Figuerola, J. (2013) Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36: 430438.CrossRefGoogle Scholar
Ward, M. P. (2005) The role of immigration in the decline of an isolated migratory bird population. Conserv. Biol. 19: 15281536.CrossRefGoogle Scholar
Weber, T. P., Alerstam, T. and Hedenström, A. (1998) Stop-over decisions under wind influence. J. Avian Biol. 29: 552560.CrossRefGoogle Scholar
Woodrey, M. S. and Moore, F. R. (1997) Age-related differences in the stop-over of fall landbird migrants on the coast of Alabama. The Auk 114: 695707.CrossRefGoogle Scholar
Woods, R. W. and Woods, A. (2006) Birds and mammals of the Falkland Islands. Old Basing, UK: WILDGuides.Google Scholar
Yu, H., Wang, X., Cao, L., Zhang, L., Jia, Q., Lee, H., et al. (2017) Are declining populations of wild geese in China ‘prisoners’ of their natural habitats? Curr. Biol. 27: R376R377.CrossRefGoogle ScholarPubMed
Zhang, W., Li, X., Yu, L. and Si, Y. (2018) Multi-scale habitat selection by two declining East Asian waterfowl species at their core spring stop-over area. Ecol. Indicators 87: 127135.CrossRefGoogle Scholar
Zoratto, F., Santucci, D. and Alleva, E. (2009) Theories commonly adopted to explain the antipredatory benefits of the group life: the case of starling (Sturnus vulgaris). Rendiconti Lincei 20: 163176.CrossRefGoogle Scholar