Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-15T17:48:08.382Z Has data issue: false hasContentIssue false

Effects of wind energy production on a threatened species, the Bicknell’s Thrush Catharus bicknelli, with and without mitigation

Published online by Cambridge University Press:  16 March 2020

JÉRÔME LEMAÎTRE*
Affiliation:
Ministère des Forêts, de la Faune et des Parcs, Quebec, Quebec, CanadaG1S 4X4.
VINCENT LAMARRE
Affiliation:
Ministère des Forêts, de la Faune et des Parcs, Quebec, Quebec, CanadaG1S 4X4.
*
*Author for correspondence; email: jerome.lemaitre@mffp.gouv.qc.ca

Summary

Renewable energy helps meet the growing energetic demand while reducing greenhouse gas emissions. Despite its environmental benefits, production of wind energy can adversely affect wildlife populations, including birds. In some species, indirect impacts such as habitat loss and disturbance may be more important than fatalities caused by collisions with turbines. Bicknell’s Thrush Catharus bicknelli, one of the most endangered bird species in North America, may be threatened by wind energy production because it breeds at high elevation sites, which are often prized for their wind potential. Our study had two objectives: we first aimed to document the impacts of the construction and operation of a wind energy facility without mitigation strategy on the occurrence of the Bicknell’s Thrush. At a second facility, we then tested the effectiveness of turbine micro-siting as an effective mitigation strategy to reduce the impacts of wind-energy development on the species. We conducted avian point-counts at 143 locations spread across both facilities in Quebec (Canada) at different periods: before, during and after construction. We modelled the probability of occurrence of the species at point-counts as a function of period, forest loss caused by wind energy development, distance to the nearest turbine and habitat suitability. At the facility without mitigation, we found that the probability of occurrence decreased during construction and early operation at high elevation sites, where most of the turbines were erected. However, the Bicknell’s Thrush recolonized high elevation sites eight years post-construction. In addition, we did not detect a significant impact of wind energy production on the species’ occurrence at the facility where micro-siting was applied. We conclude that habitat loss and disturbance during construction are the main impacts of wind energy production on the Bicknell’s Thrush and that micro-siting appears to be a promising mitigation strategy.

Type
Research Article
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Wind Energy Association (2014) AWEA US Wind industry fourth quarter 2013 market report. Washington, USA: AWEA.Google Scholar
Anderson, D. R. (2007) Model based inference in the life sciences: a primer on evidence. New York, USA: Springer Science & Business Media.Google Scholar
Arnett, E. B., Inkley, D. B., Johnson, D. H., Larkin, R. P., Manes, S., Manville, A. M., Mason, J. R., Morrison, M. L., Strickland, M. D. and Thresher, R. (2007) Impacts of wind energy facilities on wildlife and wildlife habitat. Wildlife Society Technical Review 07-2|. Bethesda, USA: The Wildlife Society.Google Scholar
Arnold, T. W. (2010) Uninformative parameters and model selection using Akaike's Information Criterion. J. Wildl. Manage. 74: 1175-1178.CrossRefGoogle Scholar
Atwood, J. L., Rimmer, C. C., McFarland, K. P., Tsai, S. H. and Nagy, L. R. (1996) Distribution of Bicknell's Thrush in New England and New York. Wilson Bull. 108: 650-661.Google Scholar
Aubry, Y., Desrochers, A. and Seutin, G. (2011) Response of Bicknell’s Thrush (Catharus bicknelli) to boreal silviculture and forest stand edges: a radio-tracking study. Can. J. Zool. 89: 474-482.CrossRefGoogle Scholar
Aubry, Y., Desrochers, A. and Seutin, G. (2016) Regional patterns of habitat use by a threatened forest bird, the Bicknell’s Thrush (Catharus bicknelli), in Quebec. Can. J. Zool. 94: 301-309.CrossRefGoogle Scholar
Ball, M. (2000) Vocal behaviour of Bicknell’s Thrush (Catharus bicknelli). MSc thesis. Halifax, Canada: Dalhousie University.Google Scholar
Bartoń, K. (2017) MuMIn: multi-model averaging. R package version 1.40.0.Google Scholar
Bates, D. M., Maechler, M., Bolker, B. M. and Walker, S. (2015) lme4: Linear mixed-effects modeling using 'Eigen' and S4. R package version 1.1-11.Google Scholar
International, BirdLife (2016) Catharus bicknelli. The IUCN Red List of Threatened Species 2016: e.T22728467A94987334 http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22728467A94987334.en (accessed on 30 November 2017).CrossRefGoogle Scholar
Bruckner, T., Bashmakov, I., Mulugetta, Y., Chum, H., De la Vega Navarro, A., Edmonds, J., Faaij, A., Fungtammasan, B., Garg, A. and Hertwich, E. (2014) Energy systems. Pp. 511-597 in Edenhofer, O., Pichs, R.-Madruga, Y.Sokona, E.Farahani, S.Kadner, K.Seyboth, A.Adler, I.Baum, S.Brunner, P.Eickemeier, B.Kriemann, J.Savolainen, S.Schlömer, C.von Stechow, T. Zwickel and Minx, J. C. eds. Climate Change 2014: Mitigation of climate change. Contribution of working group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, USA: Cambridge University Press.Google Scholar
Burnham, K. and Anderson, D. (2002) Model selection and multi-model inference: a practical information-theoretic approach. New York, USA: Springer Science & Business Media.Google Scholar
Calvert, A., Bishop, C., Elliot, R., Krebs, E., Kydd, T., Machtans, C. and Robertson, G. (2013) A synthesis of human-related avian mortality in Canada. Avian Conserv. Ecol. 8: 11.Google Scholar
CanWEA (2017) CanWEA’s Vision/Mission http://canwea.ca/about-canwea/visionmission/ (accessed on 13 January 2017).Google Scholar
CanWEA (2018) Installed Capacity https://canwea.ca/wind-energy/installed-capacity/ (accessed on 5 May 2018).Google Scholar
Chisholm, S. E. and Leonard, M. L. (2008) Effect of forest management on a rare habitat specialist, the Bicknell's Thrush (Catharus bicknelli). Can. J. Zool. 86: 217-223.CrossRefGoogle Scholar
Connolly, V., Seutin, G., Savard, J.-P. L. and Rompré, G. (2002) Habitat use by the Bicknell's Thrush in the Estrie region, Quebec. Wilson Bull. 114: 333-341.CrossRefGoogle Scholar
COSEWIC (2009) COSEWIC assessment and status report on the Bicknell's Thrush Catharus bicknelli in Canada. Submitted to the Committee on the Status of Endangered Wildlife in Canada. Ottawa, Canada.Google Scholar
D.O.E. (2008) 20% Wind by 2030: Increasing wind energy’s contribution to U.S. electricity supply. Report DOE/GO-102008-2567. Washington, USA: U.S. Department of Energy.Google Scholar
Drewitt, A. L. and Langston, R. H. (2006) Assessing the impacts of wind farms on birds. Ibis 148: 29-42.CrossRefGoogle Scholar
Environnement and Climate Change Canada (2016) Recovery Strategy for the Bicknell’s Thrush (Catharus bicknelli) in Canada [Proposed], Environnement and Climate Change Canada. Ottawa, Canada: Species at Risk Recovery Strategy Series.Google Scholar
ESRI (2016) ArcGIS version 10.4.1. Redlands, USA: Environmental Systems Research Institute.Google Scholar
Fahrig, L. (2001) How much habitat is enough? Biol. Conserv. 100: 65-74.CrossRefGoogle Scholar
Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 34: 487-515.CrossRefGoogle Scholar
Farfán, M., Duarte, J., Real, R., Muñoz, A., Fa, J. and Vargas, J. (2017) Differential recovery of habitat use by birds after wind farm installation: A multi-year comparison. Environ. Impact Assess. Rev. 64: 8-15.CrossRefGoogle Scholar
Garcia, D. A., Canavero, G., Ardenghi, F. and Zambon, M. (2015) Analysis of wind farm effects on the surrounding environment: Assessing population trends of breeding passerines. Renew. Energ. 80: 190-196.CrossRefGoogle Scholar
Government of Quebec (2009) Norme de stratification écoforestière. Quatrième programme d’inventaire décennal. Québec, Canada: Ministère des Forêts de la Faune et des Parcs, secteur des forêts.Google Scholar
Hale, A. M., Hatchett, E. S., Meyer, J. A. and Bennett, V. J. (2014) No evidence of displacement due to wind turbines in breeding grassland songbirds. Condor 116: 472-482.CrossRefGoogle Scholar
Hill, J. M. and Lloyd, J. D. (2017) A fine‐scale US population estimate of a montane spruce–fir bird species of conservation concern. Ecosphere 8: e01921.CrossRefGoogle Scholar
Katzner, T. E., Brandes, D., Miller, T., Lanzone, M., Maisonneuve, C., Tremblay, J. A., Mulvihill, R. and Merovich, G. T. Jr (2012) Topography drives migratory flight altitude of golden eagles: implications for on‐shore wind energy development. J. Appl. Ecol. 49: 1178-1186.CrossRefGoogle Scholar
Kiesecker, J. M., Evans, J. S., Fargione, J., Doherty, K., Foresman, K. R., Kunz, T. H., Naugle, D., Nibbelink, N. P. and Niemuth, N. D. (2011) Win-win for wind and wildlife: a vision to facilitate sustainable development. PLoS One 6: e17566.CrossRefGoogle ScholarPubMed
Kuvlesky, W. P. Jr, Brennan, L. A., Morrison, M. L., Boydston, K. K., Ballard, B. M. and Bryant, F. C. (2007) Wind energy development and wildlife conservation: challenges and opportunities. J. Wildl. Manage. 71: 2487-2498.CrossRefGoogle Scholar
Lambert, J. D., McFarland, K. P., Rimmer, C. C., Faccio, S. D. and Atwood, J. L. (2005) A practical model of Bicknell's Thrush distribution in the northeastern United States. Wilson Bull. 117: 1-11.CrossRefGoogle Scholar
Leddy, K. L., Higgins, K. F. and Naugle, D. E. (1999) Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands. Wilson Bull. 111: 100-104.Google Scholar
Leung, D. Y. and Yang, Y. (2012) Wind energy development and its environmental impact: A review. Renew. Sust. Energ. Rev. 16: 1031-1039.CrossRefGoogle Scholar
Lloyd, J. and McFarland, K. (2017) A Conservation Action Plan for Bicknell’s Thrush (Catharus bicknelli). International Bicknell’s Thrush Conservation Group (IBTCG)http://bicknellsthrush.org/conservation-action-plan/conservation-action-plan-for-bicknells-thrush.Google Scholar
Lord, G. and Faucher, A. (2003) Normes de cartographie écoforestière: troisième inventaire écoforestier. Québec, Canada: Ministère des ressources naturelles, de la faune et des parcs, Forêt Québec, Direction des inventaires forestiers.Google Scholar
Loss, S. R., Will, T. and Marra, P. P. (2013) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol. Conserv. 168: 201-209.CrossRefGoogle Scholar
Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., Mascarenhas, M. and Bernardino, J. (2014) Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179: 40-52.CrossRefGoogle Scholar
Marques, A. T., Santos, C. D., Hanssen, F., Muñoz, A. R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J. M. and Silva, J. P. (2019) Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12961Google ScholarPubMed
May, R. (2017) Mitigation for birds. Pp. 124-144 in Perrow, M. R. ed. Wildlife and wind farms, conflicts and solutions. Vol. 2. Onshore: Monitoring and mitigation, Exeter, UK: Pelagic Publishing.Google Scholar
May, R. F. (2015) A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 190: 179-187.CrossRefGoogle Scholar
Mazerolle, M. J. (2016) AICcmodavg: model selection and multimodel inference based on (Q) AIC (c). R package version 2.1-0.Google Scholar
McClure, C. J., Ware, H. E., Carlisle, J., Kaltenecker, G. and Barber, J. R. (2013) An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc. Roy. Soc. B-Biol. Sci. 280: 20132290.CrossRefGoogle ScholarPubMed
McFarland, K. P., Rimmer, C. C., Frey, S. J. K., Faccio, S. D. and Collins, B. B. (2008) Demography, ecology and conservation of Bicknell's Thrush in Vermont, with a special focus on the northeastern highlands. Technical Report 08-03. Norwich, USA: Vermont Center for Ecostudies.Google Scholar
MDDEFP (2013) Protocole d’inventaire de la Grive de Bicknell et de son habitat. Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, secteur de la faune.Google Scholar
MFFP (2019) Grive de Bicknell (Catharus Bicknelli), fiche descriptive. https://www3.mffp.gouv.qc.ca/faune/especes/menacees/fiche.asp?noEsp=84 (accessed on 11 November 2019).Google Scholar
Minderman, J., Pendlebury, C. J., Pearce-Higgins, J. W. and Park, K. J. (2012) Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity. PLoS One 7: e41177.CrossRefGoogle ScholarPubMed
Nixon, E. A., Holmes, S. B. and Diamond, A. W. (2001) Bicknell’s thrushes (Catharus bicknelli) in New Brunswick clear cuts: their habitat associations and co-occurrence with Swainson’s thrushes (Catharus ustulatus). Wilson Bull. 113: 33-40.CrossRefGoogle Scholar
Parrish, C. R. (2013) Impacts of wind development on the abundance and distribution of high-elevation birds in northern New Hampshire, with a focus on Bicknell’s thrush (Catharus bicknelli). MSc thesis. Plymouth, USA: Plymouth State University.Google Scholar
Pearce-Higgins, J. W., Stephen, L., Douse, A. and Langston, R. H. W. (2012) Greater impacts of wind farms on bird populations during construction than subsequent operation: results of a multi-site and multi-species analysis. J. Appl. Ecol. 49: 386-394.CrossRefGoogle Scholar
R Development Core Team (2016) R: a language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing.Google Scholar
Rimmer, C. C., McFarland, K. P., Lambert, J. D. and Renfrew, R. B. (2004) Evaluating the use of Vermont ski areas by Bicknell’s Thrush: applications for Whiteface Mountain, New York. Woodstock, USA: Vermont Institute of Natural Science.Google Scholar
Saidur, R., Rahim, N., Islam, M. and Solangi, K. (2011) Environmental impact of wind energy. Renew. Sust. Energ. Rev. 15: 2423-2430.CrossRefGoogle Scholar
Schmidt, K. A. and Ostfeld, R. S. (2003) Songbird populations in fluctuating environments: predator responses to pulsed resources. Ecology 84: 406-415.CrossRefGoogle Scholar
Shaffer, J. A. and Buhl, D. A. (2016) Effects of wind-energy facilities on breeding grassland bird distributions. Conserv. Biol. 30: 59-71.CrossRefGoogle ScholarPubMed
Smith, J. A. and Dwyer, J. F. (2016) Avian interactions with renewable energy infrastructure: An update. Condor 118: 411-423.CrossRefGoogle Scholar
Strickland, M., Arnett, E., Erickson, W., Johnson, D., Johnson, G., Morrison, M., Shaffer, J. and Warren-Hicks, W. (2011) Comprehensive guide to studying wind energy/wildlife interactions. Washington, USA: Prepared for the National Wind Coordinating Collaborative.Google Scholar
Tingley, M. W., Darling, E. S. and Wilcove, D. S. (2014) Fine‐and coarse‐filter conservation strategies in a time of climate change. Ann. NY. Acad. Sci. 1322: 92-109.CrossRefGoogle Scholar
Townsend, J. M., McFarland, K. P., Rimmer, C. C., Ellison, W. G. and Goetz, J. E. (2015) Bicknell's Thrush (Catharus bicknelli), version 2.0. in Rodewals, P. G. ed. The Birds of North America, Ithaca, USA: Cornell Lab of Ornithology.Google Scholar
Vanermen, N., Stienen, E., Courtens, W., Van der walle, M. and Verstraete, H. (2013) Attraction of seabirds. Pp. 163-165 in Degraer, S., Brabant, R. and Rumes, B. eds. Environmental impacts of offshore wind farms in the Belgian part of the North Sea: Learning from the past to optimise future monitoring programmes, Brussels, Belgium: Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management Section.Google Scholar
Wiser, R., Yang, Z., Hand, M., Hohmeyer, O., Infield, D., Jensen, P. H., Nikolaev, V., O’Malley, M., Sinden, G. and Zervos, A. (2011) Wind Energy. Pp. 535-608 in Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S. and von Stechow, C. eds. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge, UK and New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Zimmerling, J. R., Pomeroy, A. C., d'Entremont, M. V. and Francis, C. M. (2013) Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conserv. Ecol. 8: 10.Google Scholar
Supplementary material: File

Lemaître and Lamarre Supplementary Materials

Lemaître and Lamarre Supplementary Materials

Download Lemaître and Lamarre Supplementary Materials(File)
File 17.9 KB