Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T07:03:18.582Z Has data issue: false hasContentIssue false

Making inferences about non-detection observations to improve occurrence predictions in Venezuelan Psittacidae

Published online by Cambridge University Press:  22 January 2020

JOSÉ R. FERRER-PARIS
Affiliation:
Centro de Estudios Botánicos y Agroforestales. Instituto Venezolano de Investigaciones Científicas (IVIC). Apartado 20632, Caracas 1020-A Venezuela. Current affiliation: University of New South Wales, School of Biological, Earth and Environmental Sciences, NSW, Kensington 2052, Australia.
ADA SÁNCHEZ-MERCADO*
Affiliation:
Ciencias Ambientales, Universidad Espíritu Santo, Ecuador. Provita, Chacao, Caracas 1060, Venezuela.
*
*Author for correspondence; email: ay.sanchez.mercado@gmail.com

Summary

The global decline in psittacid populations highlights the need for monitoring programmes that allow us to estimate the level of confidence that can be placed in a non-detection observation in order to assess changes in range status. We used the detection/non-detection records for 26 psittacid species detected during the first national bird monitoring programme in Venezuela carried out in 2010 by the Neotropical Biodiversity Mapping Initiative. We fitted occupancy models and evaluate the suitability of the data to explain the lack of detections given the current sampling effort, and the expected occurrence probabilities due to environmental conditions (conditional probability of occurrence; ΨCONDL). We were able to fit reliable models for 13 of the 26 species detected. For Green-rumped Parrotlet Forpus passerinus, Blue-headed Parrot Pionus menstrus, and Orange-winged Amazon Amazona amazonica, the probability of detection (p) under the current sampling effort was too low (> 0.2) in areas where environmental conditions would imply high ΨCONDL (< 0.3). This suggests that sampling effort should be increased to generate reliable estimations of occurrence. In contrast, for Scarlet Macaw Ara macao, Yellow-crowned Amazon Amazona ochrocephala, Orange-chinned Parakeet Brotogeris jugularis and Brown-throated Parakeet Eupsittula pertinax the model estimated high p (< 0.3) and low ΨCONDL (> 0.2), suggesting that the species are reliably detected and better models could be obtained by including other predictive variables related to temporal use of resources and habitat heterogeneity. To improve the effectiveness of parrot monitoring programme in Neotropical countries, we suggest increasing the sampling effort, developing several surveys per year, and including variables related with temporal use of resources and habitat heterogeneity.

Type
Research Article
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgardt, J. A., Sauder, J. D. and Nicholson, K. L. (2014) Occupancy modeling of woodpeckers: Maximizing detections for multiple species with multiple spatial scales. J. Fish Wildl. Manag. 5: 198207.CrossRefGoogle Scholar
Berkunsky, I., Simoy, M. V, Cepeda, R. E., Marinelli, C., Kacoliris, F. P., Daniele, G., Cortelezzi, A., Díaz-Luque, J. A., Friedman, J. M. and Aramburú, R. M. (2015) Assessing the use of forest islands by parrot species in a Neotropical savanna. Avian Conserv. Ecol. 10: 11.CrossRefGoogle Scholar
BirdLife International (2008) Bird species distribution maps of the world. BirdLife International. Available at http://www.birdlife.org/datazone/info/spcdownload [accessed 1 October 2017].Google Scholar
BirdLife International (2015) IUCN Red List for birds. BirdLife International. Available at http://www.birdlife.org [accessed 10 October 2017].Google Scholar
Burnham, K. P. and Anderson, D. R. (2002) Model selection and multi-model inference. A practical information-theoretic approach. New York, USA: Springer.Google Scholar
De Araújo, C. B., Marcondes-Machado, L. O. and Costa, G. C. (2014) The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots. J Biogeogr. 41: 513523.CrossRefGoogle Scholar
Didan, K. (2015) MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC. NASA EOSDIS LP DAAC. Available at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1_v006 [accessed 20 June 2017].Google Scholar
Ferrer-Paris, J. R., Rodríguez, J. P., Good, T., Sánchez-Mercado, A., Rodríguez-Clark, K. M., Rodríguez, G. A. and Solís, A. (2013) Systematic, large-scale national biodiversity surveys: NeoMaps as a model for tropical region. Divers. Distrib. 19: 215231.CrossRefGoogle Scholar
Ferrer-Paris, J. R., Sánchez-Mercado, A., Rodríguez-Clark, K. M., Rodríguez, J. P. and Rodríguez, G. A. (2014) Using limited data to detect changes in species distributions: Insights from Amazon parrots in Venezuela. Biol Conserv. 173: 133143.CrossRefGoogle Scholar
Fiske, I. and Chandler, R. B. (2011) Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43: 123.CrossRefGoogle Scholar
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. and Michaelsen, J. (2015) The climate hazards infrared precipitation with stations — a new environmental record for monitoring extremes. Sci. Data. 2: 121.CrossRefGoogle ScholarPubMed
Garrard, G. E., Bekessy, S. A., McCarthy, M. A. and Wintle, B. A. (2014) Incorporating detectability of threatened species into environmental impact assessment. Conserv. Biol. 29: 216225.CrossRefGoogle ScholarPubMed
GBIF (2018) Occurrence Download. GBIF. Available at https://doi.org/10.15468/dl.il74eh [accessed 20 June 2018].CrossRefGoogle Scholar
Hille, D. C., Wiedenfeld, D. A., Lezama-Lopez, M., Brightsmith, D. and Patten, M. A. (2014) Occupancy trends of the avian family Psittacidae in Nicaragua over a 20-year monitoring period. In AOU-COS-SCO 2014 Joint Meeting 23 -28 September 2014. Estes Park, Colorado: American Ornithologists’ Union, Cooper Ornithological Society, Society of Canadian Ornithologists.Google Scholar
Hilty, S. L. (2003) Birds of Venezuela. Second edition. New Jersey, USA: Princeton University Press.Google Scholar
Juniper, T. and Park, M. (1998) Parrots: A guide to parrots of the world. New Haven, Connecticut, USA: Yale University Press.Google Scholar
Kerr, J. T., Southwood, T. R. E. and Cihlar, J. (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. P. Natl. Acad. Sci. USA. 98: 1136511370.CrossRefGoogle ScholarPubMed
Kéry, M. and Schmidt, B. R. (2008) Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9: 207216.CrossRefGoogle Scholar
LP DAAC (Land Processes Distributed Active Archive Center) (2014) Vegetation Indices 16-Day L3 Global 250m. LP DAAC. Available at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1 [accessed 4 February 2017].Google Scholar
Lentino, M. and Portas, C. (1994) Estacionalidad de los psitacidos en el uso del paso de Portacuelo, Parque Nacional Henri Pittier, estado Aragua, Venezuela. Pp. 1116 in Morales, G., Novo, L., Bigio, D., Luy, A.. and Rojas-Suárez, F., eds. Biología y conservación de los psitácidos de Venezuela. Caracas: Sociedad Conservacionista Audubon de Venezuela.Google Scholar
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A. and Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology. 83: 2248-2245.CrossRefGoogle Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L. and Heines, J. E. (2006) Occupancy estimation and modeling. Inferring patterns and dynamics of species occurrence. London, UK: Academic Press.Google Scholar
Martin, R. O., Perrin, M. R., Boyes, R. S., Abebe, Y. D., Annorbah, N. D., Asamoah, A., Bizimana, D. Bobo, K, S., Bunbury, N., Brouwer, J., Diop, M. S., Ewnetu, M., Fotso, R. C., Garteh, J., Hall, P., Holbech, L. H., Madindou, I. R., Maisels, F., Mokoko, J., Mulwa, R., Reuleaux, A., Symes, C., Tamungang, S., Taylor, S., Valle, S., Waltert, M. and Wondafrash, M. (2014) Research and conservation of the larger parrots of Africa and Madagascar: a review of knowledge gaps and opportunities. Ostrich. 85: 205233.CrossRefGoogle Scholar
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M. and Araújo, M. B. (2011) Ecological niches and geographic distributions. Princeton, USA: Princeton University Press.CrossRefGoogle Scholar
Plasencia-Vázquez, A. H., Escalona-Segura, G. and Esparza-Olguín, L. G. (2014) Modelación de la distribución geográfica potencial de dos especies de psitácidos neotropicales utilizando variables climáticas y topográficas. Acta Zool. Mex. 30: 471490.Google Scholar
Renton, K. (2002) Seasonal variation in occurrence of macaws along a rainforest river. J. Field Ornithol. 73: 1519.CrossRefGoogle Scholar
Rodrigues, P. O., Borges, M. R. and Melo, C. (2012) Richness, composition and detectability of Psittacidae (Aves) in three palm swamps of the Cerrado sensu lato in central Brazil. Rev. Chil. Hist. Nat. 85: 171178.CrossRefGoogle Scholar
Rodríguez, G. A., Rodríguez, J. P., Ferrer-Paris, J. R. and Sánchez-Mercado, A. (2012) A nation-wide standardized bird survey scheme for Venezuela. Wilson J. Ornithol. 124: 230244.CrossRefGoogle Scholar
Rodríguez, J. P. (2014) Public investment in biodiversity conservation. Interciencias 39: 538538.Google Scholar
Rodríguez, J. P., Rojas-Suárez, F. and Giraldo Herández, D. (2010) Libro rojo de los escosistemas terrestres de Venezuela. Caracas, Venezuela: Provita, Shell de Venezuela, Lenovo.Google Scholar
Rodríguez, J. P., Rojas-Suárez, F., García-Rawlins, A. and Rojas-Suárez, F. (2015) Libro rojo de la fauna venezolana. Caracas, Venezuela: Provita and Fundación Empresas Polar.Google Scholar
Running, S., Mu, Q. and Zhao, M. (2017) MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Available at https://lpdaac.usgs.gov/products/mod16a2v006/ [accessed 4 February 2017].Google Scholar
Sánchez-Mercado, A., Asmüssen, M., Rodríguez, J. P., Moran, L., Cardozo-Urdaneta, A. and Morales, L. (2020) Illegal trade of the Psittacidae in Venezuela. Oryx 54: 7783.CrossRefGoogle Scholar
Snyder, N., McGowan, P., Gilardi, J. and Grajal, A. (2000) Parrots: Status survey and conservation action plan 2000-2004. Gland, Switzerland: IUCN.Google Scholar
Wan, Z., Hook, S. and Hulley, G. (2015) MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS LP DAAC. Available at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2_v006 [accessed 4 February 2017].Google Scholar
Wintle, B. A., Walshe, T. V, Parris, K. M. and McCarthy, M. A. (2011) Designing occupancy surveys and interpreting non-detection when observations are imperfect. Divers. Distrib. 18: 417424.CrossRefGoogle Scholar
Supplementary material: PDF

Ferrer-Paris and Sánchez-Mercado supplementary material

Ferrer-Paris and Sánchez-Mercado supplementary material

Download Ferrer-Paris and Sánchez-Mercado supplementary material(PDF)
PDF 11.6 MB