Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T18:20:52.454Z Has data issue: false hasContentIssue false

An assessment of the Tagula Honeyeater Microptilotis vicina, a Data Deficient bird species in a Melanesian endemic hotspot

Published online by Cambridge University Press:  22 July 2019

WILLIAM GOULDING*
Affiliation:
Biodiversity Unit, Queensland Museum, South Bank, South Brisbane, Queensland 4101, Australia. School of Earth and Environmental Sciences, University of Queensland - St Lucia, Brisbane, Queensland 4072, Australia.
PATRICK T. MOSS
Affiliation:
School of Earth and Environmental Sciences, University of Queensland - St Lucia, Brisbane, Queensland 4072, Australia.
CLIVE A. MCALPINE
Affiliation:
School of Earth and Environmental Sciences, University of Queensland - St Lucia, Brisbane, Queensland 4072, Australia.
*
*Author for correspondence; email: williambillgoulding@gmail.com

Summary

We conducted research into the ‘Data Deficient’ and endemic Tagula Honeyeater Microptilotis vicina of the Louisiade Archipelago, Papua New Guinea. This species was only observed on Sudest and Junet Islands. Islands were visited between October and January in the years from 2012–2014 and in 2016. We conducted the first assessment of spatial and habitat use by this species using radio-tracking in 2016. These findings were also used to inform estimates using traditional population density methods. CTMM package in R was used for home-range estimation for the tracked honeyeaters. Our results supported that members of this species display territoriality during the breeding season, occupying a mean of 2.0 ± 0.6 (SE) ha on Junet Island (n = 5). Whether individuals defended defined territories at other times of the year was not known but re-sightings of marked birds confirmed them to be locally resident. Population estimates ranged between 53,000 and 85,000 individuals. However, more conservative estimates nearing 50,000 individuals were considered prudent given lower population densities observed on parts of the larger Sudest Island (0.64/ha). This species utilised the canopy and understorey layers in a range of habitats from mangroves at sea-level, gardens and regrowth of various ages to cloud forest on the highest point of Sudest Island (∼800 m asl). Dietary observations support that like many closely related species, Tagula Honeyeaters have a broad diet of mostly insects supplemented with nectar and fruit. Observations indicated that this species had life history attributes toward the slower end of the spectrum but similar to other congeners. Vocalisations were more diverse in both structure and complexity than those of suspected close relatives the Mimic Microptilotis analogus and Graceful Microptilotis gracilis Honeyeaters. Morphological measures were similarly different, supporting species level recognition.

Type
Research Article
Copyright
© BirdLife International, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, M. J., Naikatini, A. and Moyle, R. G. (2014) A molecular phylogeny of Pacific honeyeaters (Aves: Meliphagidae) reveals extensive paraphyly and an isolated Polynesian radiation. Mol. Phylogenet. Evol. 71: 308315.10.1016/j.ympev.2013.11.014CrossRefGoogle Scholar
Andersen, M. J., Shult, H. T., Cibois, A., Thibault, J.-C., Filardi, C. E. and Moyle, R. G. (2015) Rapid diversification and secondary sympatry in Australo-Pacific kingfishers (Aves: Alcedinidae: Todiramphus). Roy. Soc. Open Sci. 2: 140375.CrossRefGoogle Scholar
Audacity Team (2012) Audacity version 2.0.2. Available at: https://www.audacityteam.org/Google Scholar
Australian Government Bureau of Meteorology (2017) El Niño - Detailed Australian Analysis. Available at: http://www.bom.gov.au/climate/enso [Accessed 17 July 2017].Google Scholar
Beehler, B. M. and Pratt, T. K. (2016) Birds of New Guinea: Distribution, taxonomy, and systematics. USA: Princeton University Press.CrossRefGoogle Scholar
Beruldsen, G. (1980) A field guide to the nests and eggs of Australian birds. Australia: Rigby Publishers Limited.Google Scholar
Bibby, C. J., Burgess, N. D., Hill, D. A. and Mustoe, S. (2000) Bird census techniques. Oxford, UK: Elsevier.Google Scholar
Bioacoustics Research Program (2006) Raven Lite - Version 1.0 . Cornell University. Available at: http://ravensoundsoftware.com/software/raven-lite/.Google Scholar
BirdLife International. (2013) Endemic Bird Area factsheet: Louisiade Archipelago. Available at: http://www.birdlife.org [Accessed 04 March 2013].Google Scholar
BirdLife International. (2018) Species factsheet: Microptilotis vicina. Available at: http://www.birdlife.org [Accessed 02 November 2018].Google Scholar
Blondel, J. (2000) Evolution and ecology of birds on islands: trends and prospects. Vie Milieu 50: 205220.Google Scholar
Buchanan, G. M., Butchart, S. H. M., Dutson, G., Pilgrim, J. D., Steininger, M. K., Bishop, K. D. and Mayaux, P. (2008) Using remote sensing to inform conservation status assessment: Estimates of recent deforestation rates on New Britain and the impacts upon endemic birds. Biol. Conserv. 141: 5666.CrossRefGoogle Scholar
Butt, N., Seabrook, L., Maron, M., Law, B. S., Dawson, T. P., Syktus, J. and McAlpine, C. A. (2015) Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Change Biol. 21: 32673277.10.1111/gcb.12869CrossRefGoogle ScholarPubMed
Calabrese, J. M., Fleming, C. H. and Gurarie, E. (2016) ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7: 11241132.CrossRefGoogle Scholar
Campbell, A. J. (1920) Notes on additions to the “H. L. White Collection”. Emu 20: 4965.CrossRefGoogle Scholar
Campbell, A. J. and Barnard, H. G. (1917) Birds of the Rockingham Bay District, North Queensland. Emu 17: 238.10.1071/MU917002CrossRefGoogle Scholar
Charif, R. A., Ponirakis, D. W. and Krein, T. P. (2006) Raven Lite 1.0 User’s Guide. Available at: http://www.birds.cornell.edu/brp/raven/.Google Scholar
Christidis, L. and Schodde, R. (1993) Relationships and radiations in the Meliphagine Honeyeaters, Meliphaga, Lichenostomus and Xanthotis (Aves, Meliphagidae) - protein evidence and its integration with morphology and ecogeography. Aust. J. Zool. 41: 293316.CrossRefGoogle Scholar
Clark, N. J., Olsson-Pons, S., Ishtiaq, F. and Clegg, S. M. (2015) Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. Int. J. Parasitol. 45: 891899.10.1016/j.ijpara.2015.08.008CrossRefGoogle Scholar
Coates, B. J. and Peckover, W. S. (2001) Birds of Guinea and the Bismarck Archipelago: a photographic guide. Queensland: Dove Publications Pty Ltd.Google Scholar
Covas, R. (2012) Evolution of reproductive life histories in island birds worldwide. P. Roy. Soc. B-Biol. Sci. 279: 15311537.10.1098/rspb.2011.1785CrossRefGoogle ScholarPubMed
Crowell, K. L. (1962) Reduced interspecific competition among the birds of Bermuda. Ecology 43: 7588.CrossRefGoogle Scholar
Diamond, J. M. (1970) Ecological consequences of island colonization by southwest Pacific birds, I. Types of niche shifts. P. Natl. Acad. Sci. USA 67: 529536.CrossRefGoogle ScholarPubMed
Dutson, G. (2011) Birds of Melanesia: Bismarcks, Solomons, Vanuatu and New Caledonia. London: Christopher Helm.Google Scholar
Fallon, S. M., Bermingham, E. and Ricklefs, R. E. (2003) Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution 57: 606615.CrossRefGoogle ScholarPubMed
Fisher, K. and Fisher, L. (1996) Comparative measurements of the Graceful and Yellow-spotted Honeyeaters. Corella 20: 102103.Google Scholar
Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P. and Calabrese, J. M. (2015) Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96: 11821188.10.1890/14-2010.1CrossRefGoogle ScholarPubMed
Ford, H. J. (2001) Family Meliphagidae: honeyeaters and Australian chats. In Higgins, P. J., Peter, J. M. and Steele, W. K., eds. Handbook of Australian, New Zealand and Antarctic birds . Melbourne: Oxford University Press.Google Scholar
Freeman, A. N. D., Pias, K. and Vinson, M. F. (2008) The impact of Tropical Cyclone Larry on bird communities in fragments of the endangered rainforest Type 5b. Austral Ecol . 33: 532540.CrossRefGoogle Scholar
Fridolfsson, A.-K. and Ellegren, H. (1999) A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30: 116121.CrossRefGoogle Scholar
Goulding, W., Moss, P. T. and McAlpine, C. A. (2016) Cascading effects of cyclones on the biodiversity of Southwest Pacific islands. Biol. Conserv. 193: 143152.CrossRefGoogle Scholar
Goulding, W., Perez, A. S., Moss, P. and McAlpine, C. (2018) Subsistence lifestyles and insular forest loss in the Louisiade Archipelago of Papua New Guinea: an endemic hotspot. Pac. Conserv. Biol. PC17047.Google Scholar
Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz, S. and Loveland, T. (2013) High-resolution global maps of 21st-century forest cover change. Science 342: 850853.CrossRefGoogle ScholarPubMed
Hardy, J. W. and Van Gessel, F. W. (1994) Comparative measurements of the Graceful and Yellow-spotted Honeyeaters. Corella 18: 30–30.Google Scholar
Hartert, E. (1898) On new species of birds from British New Guinea and the Louisiade Archipelago. Bull. B.O.C. viii: viii–ix.Google Scholar
Hazevoet, C. J. (2010) Conservation and species lists: taxonomic neglect promotes the extinction of endemic birds, as exemplified by taxa from eastern Atlantic islands. Bird Conserv. Internatn. 6: 181196.CrossRefGoogle Scholar
Higgins, P., Christidis, L. and Ford, H. (2017a) Mimic Honeyeater (Microptilotis analogus). In Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and De Juana, E., eds. Handbook of the birds of the world alive . Barcelona: Lynx Editions.Google Scholar
Higgins, P., Christidis, L., Ford, H. and Bonan, A. (2017b) Honeyeaters (Meliphagidae). In In Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and De Juana, E., eds. Handbook of the birds of the world alive . Barcelona: Lynx Editions.Google Scholar
Higgins, P., Christidis, L., Ford, H. and Sharpe, C. J. (2017c) Tagula Honeyeater (Microptilotis vicina). In Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and De Juana, E., eds. Handbook of the birds of the world alive . Barcelona: Lynx Editions.Google Scholar
Higgins, P. J., Peter, J. M. and Steele, W. K. E., eds (2001) Handbook of Australian, New Zealand and Antarctic birds. Melbourne: Oxford University Press.Google Scholar
Irestedt, M., Fjeldså, J. and Ericson, P. G. P. (2006) Evolution of the ovenbird-woodcreeper assemblage (Aves: Furnariidae) - major shifts in nest architecture and adaptive radiation. J. Avian Biol. 37: 260272.10.1111/j.2006.0908-8857.03612.xCrossRefGoogle Scholar
IUCN (2016) The IUCN Red List of Threatened Species - Data Deficient birds of the world, 2017 ed. Available at: http://www.iucnredlist.org. [Date Assessed 2016-10-01].Google Scholar
IUCN Standards and Petitions Subcommittee (2017) Guidelines for using the IUCN Red List categories and criteria. Version 13. Available at: http://www.iucnredlist.org/documents/RedListGuidelines.pdfGoogle Scholar
Johns, R. J. (1989) The influence of drought of tropical rainforest vegetation in Papua New Guinea. Mt. Res. Dev. 9: 248251.CrossRefGoogle Scholar
Johnson, T. H. and Stattersfield, A. J. (1990) A global review of island endemic birds. Ibis 132: 167180.CrossRefGoogle Scholar
Jønsson, K. A., Irestedt, M., Christidis, L., Clegg, S. M., Holt, B. G. and Fjeldså, J. (2014) Evidence of taxon cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala). P. Roy. Soc. B-Biol. Sci. 281.10.1098/rspb.2013.1727CrossRefGoogle Scholar
Joseph, L., Toon, A., Nyari, A. S., Longmore, N. W., Rowe, K. M. C., Haryoko, T., Trueman, J. and Gardner, J. L. (2014) A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes: Meliphagidae) highlights biogeographical and ecological complexity of a spectacular avian radiation. Zool. Scr. 43: 235248.CrossRefGoogle Scholar
Koopman, K. F. (1957) Evolution in the genus Myzomela (Aves: Meliphagidae). Auk 74: 4971.CrossRefGoogle Scholar
Lafferty, K. D. (2009) The ecology of climate change and infectious diseases. Ecology 90: 888900.CrossRefGoogle ScholarPubMed
Levin, I. I., Zwiers, P., Deem, S. L., Geest, E. A., Higashiguchi, J. M., Iezhova, T. A., Jiménez-Uzcátegui, G., Kim, D. H., Morton, J. P., Perlut, N. G., Renfrew, R. B., Sari, E. H. R., Valkiunas, G. and Parker, P. G. (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv. Biol. 27: 13661377.CrossRefGoogle ScholarPubMed
Lowe, K. W. (1989) The Australian bird bander’s manual. Canberra: Australian National Parks and Wildlife Service.Google Scholar
Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. and Hansen, M. C. (2014) Primary forest cover loss in Indonesia over 2000-2012. Nat. Clim. Change 4: 730735.CrossRefGoogle Scholar
Marki, P. Z., Fjeldså, J., Irestedt, M. and Jønsson, K. A. (2018) Molecular phylogenetics and species limits in a cryptically coloured radiation of Australo-Papuan passerine birds (Pachycephalidae: Colluricincla). Mol. Phylogenet. Evol. 124: 100105.CrossRefGoogle Scholar
Marki, P. Z., Jønsson, K. A., Irestedt, M., Nguyen, J. M., Rahbek, C. and Fjeldså, J. (2017) Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes). Mol. Phylogenet. Evol. 107: 516529.10.1016/j.ympev.2016.12.021CrossRefGoogle Scholar
Marzal, A., Ricklefs, R. E., Valkiunas, G., Albayrak, T., Arriero, E., Bonneaud, C., Czirják, G. A., Ewen, J., Hellgren, O., Horáková, D., Iezhova, T. A., Jensen, H., Krizanauskiene, A., Lima, M. R., De Lope, F., Magnussen, E., Martin, L. B., Møller, A. P., Palinauskas, V., Pap, P. L., Perez-Tris, J., Sehgal, R. N. M., Soler, M., Szöllösi, E., Westerdahl, H., Zetindjiev, P. and Bensch, S. (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS ONE 6: e21905.CrossRefGoogle Scholar
Mayr, E. (1932) Birds collected during the Whitney South Sea Expedition. 18, Notes on Meliphagidae from Polynesia and the Solomon Islands. Am. Mus. Novit. no. 516.Google Scholar
Mayr, E. and Diamond, J. M. (2001) The birds of northern Melanesia. UK: Oxford University Press.Google Scholar
McCallum, H., Kikkawa, J. and Catterall, C. (2000) Density dependence in an island population of silvereyes. Ecol. Lett. 3: 95100.10.1046/j.1461-0248.2000.00120.xCrossRefGoogle Scholar
McNab, B. K. (1994) Resource use and the survival of land and freshwater vertebrates on oceanic islands. Am. Nat. 144: 643660.CrossRefGoogle Scholar
McNab, B. K. (2016) Analysis of factors that influence energy expenditure in honeyeaters (Meliphagidae). New Zeal. J. Zool. 43: 179190.CrossRefGoogle Scholar
Miettinen, J., Shi, C. and Liew, S. C. (2011) Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17: 22612270.CrossRefGoogle Scholar
Miller, E. T. and Wagner, S. K. (2014) The vocalisations and species status of the White-lined and Kimberley Honeyeaters. Emu 114: 116120.Google Scholar
Norman, J. A., Rheindt, F. E., Rowe, D. L. and Christidis, L. (2007) Speciation dynamics in the Australo-Papuan Meliphaga honeyeaters. Mol. Phylogenet. Evol. 42: 8091.CrossRefGoogle ScholarPubMed
Novotny, V. and Basset, Y. (1998) Seasonality of sap-sucking insects (Auchenorrhyncha, Hemiptera) feeding on Ficus (Moraceae) in a lowland rain forest in New Guinea. Oecologia 115: 514522.CrossRefGoogle Scholar
Olsson-Pons, S., Clark, N. J., Ishtiaq, F. and Clegg, S. M. (2015) Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J. Anim. Ecol. 84: 985998.CrossRefGoogle ScholarPubMed
Owen, J. C. (2011) Collecting, processing, and storing avian blood: a review. J. Field Ornithol. 82: 339354.CrossRefGoogle Scholar
Pratt, T. K. and Beehler, B. M. (2014) Birds of New Guinea. New Jersey, USA: Princeton University Press.Google Scholar
Rand, A. L. (1936) Results of the Archbold expeditions. No. 11: Meliphaga analoga and its allies. Am. Mus. Novit. 872: 115.Google Scholar
R Development Core Team (2017) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org.Google Scholar
Reeves, J. M., Bostok, H. C., Ayliffe, L. K., Barrows, T. T., De Deckker, P., Devriendt, L. S., Dunbar, G. B., Drysdale, R. N., Fitzsimmons, K. E., Gagan, M. K., and Griffiths, M. L. (2013) Palaeoenvironmental change in tropical Australasia over the last 30,000 years–a synthesis by the OZ-INTIMATE group. Quaternary Sci. Rev. 74: 97114.CrossRefGoogle Scholar
Ricklefs, R. E. and Bermingham, E. (2002) The concept of the taxon cycle in biogeography. Global Ecol. Biogeogr. 11: 353361.CrossRefGoogle Scholar
Rinehart, J. B. and Kunz, T. H. (2001) Preparation and deployment of canopy mist nets made by Avinet. Bat Res. News 42: 8588.Google Scholar
Rothschild, W. and Hartert, E. (1912) List of a collection of birds made by Mr. Albert Meek on the Kumusi River, North-Eastern British New Guinea. Novitates Zoologicae XIX: 187206.Google Scholar
Sæther, B. E., Engen, S., Møller, A. P., Visser, M. E., Matthysen, E., Fiedler, W., Lambrechts, M. M., Becker, P. H., Brommer, J. E., Dickinson, J., Du Feu, C., Gehlbach, F. R., Merila, J., Rendell, W., Robertson, R. J., Thomson, D. and Torok, J. (2005) Time to extinction of bird populations. Ecology 86: 693700.CrossRefGoogle Scholar
Sæther, B. E., Engen, S., Møller, A. P., Weimerskirch, H., Visser, M. E., Fiedler, W., Matthysen, E., Lambrechts, M. M., Badyaev, A., Becker, P. H., Brommer, J. E., Bukacinski, D., Bukacinska, M., Christensen, H., Dickinson, J., Du Feu, C., Gehlbach, F. R., Heg, D., Hotker, H., Merila, J., Nielsen, J. T., Rendell, W., Robertson, R. J., Thomson, D. L., Torok, J. and Van Hecke, P. (2004) Life-history variation predicts the effects of demographic stochasticity on avian population dynamics. Am. Nat. 164: 793802.CrossRefGoogle ScholarPubMed
Salomonsen, F. (1966) Preliminary descriptions of new honeyeaters (Aves, Meliphagidae). Breviora 254: 112.Google Scholar
Schodde, R. and Mason, I. (1999) The directory of Australian birds: Passerines. Melbourne: CSIRO Publishing.10.1071/9780643100862CrossRefGoogle Scholar
Schowalter, T. D. (2012) Insect responses to major landscape-level disturbance. Annu. Rev. Entomol. 57: 120.CrossRefGoogle ScholarPubMed
Sehgal, R. N. (2015) Manifold habitat effects on the prevalence and diversity of avian blood parasites. Int. J. Parasitol.: Parasites and Wildlife 4: 421430.Google ScholarPubMed
Sekercioglu, C. H., Primack, R. B. and Wormworth, J. (2012) The effects of climate change on tropical birds. Biol. Conserv. 148: 118.CrossRefGoogle Scholar
Sekercioglu, C. H., Schneider, S. H., Fay, J. P. and Loarie, S. R. (2008) Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22: 140150.CrossRefGoogle ScholarPubMed
Sheldon, F. H. and Winkler, D. W. (1999) Nest architecture and avian systematics. Auk 116: 875877.CrossRefGoogle Scholar
Stirnemann, R. L., Potter, M. A., Butler, D. and Minot, E. O. (2016) Slow life history traits in an endangered tropical island bird, the Ma’oma’o. Bird Conserv. Internatn. 26: 366379.10.1017/S0959270915000234CrossRefGoogle Scholar
Szabo, J. K., Khwaja, N., Garnett, S. T. and Butchart, S. H. M. (2012) Global patterns and drivers of avian extinctions at the species and subspecies level. PLoS ONE 7: e47080.10.1371/journal.pone.0047080CrossRefGoogle ScholarPubMed
Tristram, H. B. (1889) On a small collection of birds from the Louisiade and d’Entrecasteaux Islands. Ibis 553558.Google Scholar
Van Schaik, C. P., Terborgh, J. W. and Wright, S. J. (1993) The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annu. Rev. Ecol. Syst. 24: 353377.CrossRefGoogle Scholar
Wiley, J. W. and Wunderle, J. M. (1993) The effects of hurricanes on birds, with special reference to Caribbean islands. Bird Conserv. Internatn. 3: 319349.CrossRefGoogle Scholar
Williams, S. E. and Middleton, J. (2008) Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change. Divers. Distrib. 14: 6977.CrossRefGoogle Scholar
Wilson, E. O. (1961) The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 95: 169193.CrossRefGoogle Scholar
Wilson, R. P. and Wilson, M-P. T. J. (1989) Tape: a package attachment technique for penguins. Wildlife Soc. B. 17: 7779.Google Scholar
Wunderle, J. M. (1995) Responses of bird populations in a Puerto Rican forest to Hurricane Hugo: The first 18 months. Condor 97: 879896.CrossRefGoogle Scholar
xeno-canto (2017) xeno-canto: Sharing bird sounds from around the world. Available at: https://www.xeno-canto.org/Google Scholar
Zyskowski, K. and Prum, R. O. (1999) Phylogenetic analysis of the nest architecture of neotropical ovenbirds (Furnariidae). Auk 116: 891911.10.2307/4089670CrossRefGoogle Scholar
Supplementary material: File

Goulding et al. supplementary material

Goulding et al. supplementary material 1

Download Goulding et al. supplementary material(File)
File 1.8 MB