Skip to main content

Advertisement

Log in

An Effective Convolutional Neural Network for Classifying Red Blood Cells in Malaria Diseases

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Malaria is one of the epidemics that can cause human death. Accurate and rapid diagnosis of malaria is important for treatment. Due to the limited number of data and human factors, the prediction performance and reliability of traditional classification methods are often affected. In this study, we propose an efficient and novel classification network named Attentive Dense Circular Net (ADCN) which based on Convolutional Neural Networks (CNN). The ADCN is inspired by the ideas of residual and dense networks and combines with the attention mechanism. We train and evaluate our proposed model on a publicly available red blood cells (RBC) dataset and compare ADCN with several well-established CNN models. Compared to other best performing CNN model in our experiments, ADCN shows superiority in all performance criteria such as accuracy (97.47% vs 94.61%), sensitivity (97.86% vs 95.20%) and specificity (97.07% vs 92.87%). Finally, we discuss the obtained results and analyze the difficulties of RBCs classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://ceb.nlm.nih.gov/repositories/malaria-datasets/

  2. https://keras.io/applications/

  3. https://github.com/titu1994/Keras-DualPathNetworks/

References

  1. Caraballo H, King K (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg Med Pract 16(5):1–23

    Google Scholar 

  2. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM (2017) World malaria report: time to acknowledge plasmodium knowlesi malaria. Malaria J 1(16):1–3. https://doi.org/10.1186/s12936-017-1787-y

    Article  Google Scholar 

  3. Somasekar J, Rama Mohan Reddy A, Sreenivasulu Reddy L (2012) An efficient algorithm for automatic malaria detection in microscopic blood images. In: Global trends in information systems and software applications, pp 431–440. https://doi.org/10.1007/978-3-642-29216-3_47

    Google Scholar 

  4. Prasad K (2012) Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. J Digit Imaging 25(4):542–549. https://doi.org/10.1007/s10278-011-9442-6

    Article  Google Scholar 

  5. Arco JE, Górriz JM, Ramírez J, Álvarez I, Puntonet CG (2015) Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Expert Syst Appl 42(6):3041–3047. https://doi.org/10.1016/j.eswa.2014.11.037

    Article  Google Scholar 

  6. Rosado L, Da Costa JMC, Elias D, Cardoso JS (2016) Automated detection of malaria parasites on thick blood smears via mobile devices. Procedia Comput Sci 90:138–144. https://doi.org/10.1016/j.procs.2016.07.024

    Article  Google Scholar 

  7. Purnama IKE, Rahmanti FZ, Purnomo MH (2013) Malaria parasite identification on thick blood film using genetic programming. In: 2013 3rd international conference on instrumentation, communications, information technology and biomedical engineering, IEEE, pp 194–198. https://doi.org/10.1109/ICICI-BME.2013.6698491

  8. Chakrabortya K, Chattopadhyayb A, Chakrabarti A, Acharyad T, Dasguptae AK (2015) A combined algorithm for malaria detection from thick smear blood slides. J Health Med Inf 6(1):645–652. https://doi.org/10.4172/2157-7420.1000179

    Article  Google Scholar 

  9. Memeu DM, Kaduki KA, Mjomba A, Muriuki NS, Gitonga L (2013) Detection of plasmodium parasites from images of thin blood smears. Open J Clin Diagnost 3(04):183. https://doi.org/10.4236/ojcd.2013.34034

    Article  Google Scholar 

  10. Charpe K, Bairagi V, Desarda S, Barshikar S (2015) A novel method for automatic detection of malaria parasite stage in microscopic blood image. In J Comput Appl 128(17):32–37. https://doi.org/10.5120/ijca2015906763

    Article  Google Scholar 

  11. Liang Z, Powell A, Ersoy I, Poostchi M, Silamut K, Palaniappan K, Guo P, Hossain MA, Sameer A, Maude RJ et al (2016) CNN-based image analysis for malaria diagnosis. In: International conference on bioinformatics and biomedicine, IEEE, pp 493–496. https://doi.org/10.1109/BIBM.2016.7822567

  12. Rajaraman S, Antani S, Poostchi M, Silamut K, Hossain M, Maude R, Jaeger S, Thoma G (2018) Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. https://doi.org/10.7717/peerj.4568

    Article  PubMed Central  Google Scholar 

  13. Abualigah LM, Khader AT, Hanandeh ES (2018) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125. https://doi.org/10.1016/j.engappai.2018.05.003

    Article  Google Scholar 

  14. Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795. https://doi.org/10.1007/s11227-017-2046-2

    Article  Google Scholar 

  15. Abualigah LM, Khader AT, Hanandeh ES (2018a) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48(11):4047–4071. https://doi.org/10.1007/s10489-018-1190-6

    Article  Google Scholar 

  16. Abualigah LM, Khader AT, Hanandeh ES (2018b) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466. https://doi.org/10.1016/j.jocs.2017.07.018

    Article  Google Scholar 

  17. Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int J Data Min Bioinformat 19(1):32–51. https://doi.org/10.1504/IJDMB.2017.088538

    Article  Google Scholar 

  18. Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, Zackheim H, Duvic M, Estrach T, Lamberg S et al (2007) Revisions to the staging and classification of mycosis fungoides and sezary syndrome: a proposal of the international society for cutaneous lymphomas (ISCL) and the cutaneous lymphoma task force of the european organization of research and treatment of cancer (EORTC). Blood 110(6):1713–1722. https://doi.org/10.1182/blood-2007-03-055749

    Article  CAS  Google Scholar 

  19. Pimpinelli N, Olsen EA, Santucci M, Vonderheid E, Haeffner AC, Stevens S, Burg G, Cerroni L, Dreno B, Glusac E et al (2005) Defining early mycosis fungoides. J Am Acad Dermatol 53(6):1053–1063. https://doi.org/10.1016/j.jaad.2005.08.057

    Article  Google Scholar 

  20. Kim YH, Willemze R, Pimpinelli N, Whittaker S, Olsen EA, Ranki A, Dummer R, Hoppe RT (2007) TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and sezary syndrome: a proposal of the international society for cutaneous lymphomas (ISCL) and the cutaneous lymphoma task force of the european organization of research and treatment of cancer (EORTC). Blood 110(2):479–484. https://doi.org/10.1182/blood-2006-10-054601

    Article  CAS  Google Scholar 

  21. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz-Perez JL, Duncan LM et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105(10):3768–3785. https://doi.org/10.1182/blood-2004-09-3502

    Article  CAS  Google Scholar 

  22. Burg G, Kempf W, Cozzio A, Feit J, Willemze R, Jaffe S, Dummer R, Berti E, Cerroni L, Chimenti S et al (2005) WHO/EORTC classification of cutaneous lymphomas 2005: histological and molecular aspects. J Cutaneous Pathol 32(10):647–674. https://doi.org/10.1111/j.0303-6987.2005.00495.x

    Article  Google Scholar 

  23. Liu L, Wu FX, Wang J (2019a) Efficient multi-kernel DCNN with pixel dropout for stroke MRI segmentation. Neurocomputing 350:117–127. https://doi.org/10.1016/j.neucom.2019.03.049

    Article  Google Scholar 

  24. Liu L, Chen S, Zhang F, Wu FX, Pan Y, Wang J (2019b) Deep convolutional neural network for automatically segmenting acute ischemic stroke lesion in multi-modality mri. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04096-x

    Article  Google Scholar 

  25. Jiang Y, Wang J, Liang Y, Xia J (2019) Combining static and dynamic features for real-time moving pedestrian detection. Multimedia Tools Appl 78(3):3781–3795. https://doi.org/10.1007/s11042-018-6057-7

    Article  Google Scholar 

  26. Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Xiao CL, Luo F, Wang J (2019) Deepsignal: detecting dna methylation state from nanopore sequencing reads using deep-learning. Bioinformatics 35(22):4586–4595. https://doi.org/10.1093/bioinformatics/btz276

    Article  Google Scholar 

  27. An Y, Huang N, Chen X, Wu F, Wang J (2019) High-risk prediction of cardiovascular diseases via attention-based deep neural networks. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2019.2935059

    Article  Google Scholar 

  28. Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K (1989) Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process 37(3):328–339. https://doi.org/10.1109/29.21701

    Article  Google Scholar 

  29. LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  30. Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the seventh international conference on document analysis and recognition-volume 2, IEEE Computer Society, p 958, https://doi.org/10.1109/ICDAR.2003.1227801

  31. Vaillant R, Monrocq C, Le Cun Y (1994) Original approach for the localisation of objects in images. IEE Proc Vis Image Signal Process 141(4):245–250. https://doi.org/10.1049/ip-vis:19941301

    Article  Google Scholar 

  32. Lu C, Yang M, Luo F, Wu FX, Li M, Pan Y, Li Y, Wang J (2018) Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 34(19):3357–3364. https://doi.org/10.1093/bioinformatics/bty327

    Article  CAS  Google Scholar 

  33. Luo H, Li M, Yang M, Wu FX, Li Y, Wang J (2020) Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinformat. https://doi.org/10.1093/bib/bbz176

    Article  Google Scholar 

  34. Yu Y, Li M, Liu L, Fei Z, Wu FX, Wang J (2019) Automatic ICD code assignment of chinese clinical notes based on multilayer attention BiRNN. J Biomed Inform 91:103114. https://doi.org/10.1016/j.jbi.2019.103114

    Article  Google Scholar 

  35. Kong Y, Gao J, Xu Y, Pan Y, Wang J, Liu J (2019) Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 324(9):63–68. https://doi.org/10.1016/j.neucom.2018.04.080

    Article  Google Scholar 

  36. Liu J, Wang J, Tang Z, Hu B, Wu FX, Pan Y (2018) Improving alzheimeres disease classification by combining multiple measures. IEEE/ACM Trans Comput Biol Bioinf 15(5):1649–1659. https://doi.org/10.1109/tcbb.2017.2731849

    Article  Google Scholar 

  37. Liu L, Chen S, Zhu X, Zhao XM, Wu FX, Wang J (2019) Deep convolutional neural network for accurate segmentation and quantification of white matter hyperintensities. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.12.050

    Article  Google Scholar 

  38. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  39. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  40. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp 4700–4708. https://doi.org/10.1109/CVPR.2017.243

  41. Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual path networks. arXiv:1707.01629

  42. Gopakumar G, Swetha M, Sai SG, Sai SG (2018) Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophoton. https://doi.org/10.1002/jbio.201700003

    Article  Google Scholar 

  43. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164. https://doi.org/10.1109/CVPR.2017.683

  44. Ersoy I, Bunyak F, Higgins JM, Palaniappan K (2012) Coupled edge profile active contours for red blood cell flow analysis. In: IEEE international symposium on biomedical imaging, IEEE, pp 748–751. https://doi.org/10.1109/ISBI.2012.6235656

  45. Fu J, Zheng H, Mei T (2017) Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4438–4446. https://doi.org/10.1109/CVPR.2017.476

  46. Zheng H, Fu J, Mei T, Luo J (2017) Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE international conference on computer vision, pp 5209–5217. https://doi.org/10.1109/ICCV.2017.557

  47. Pedersoli M, Lucas T, Schmid C, Verbeek J (2017) Areas of attention for image captioning. In: Proceedings of the IEEE international conference on computer vision, pp 1242–1250. https://doi.org/10.1109/ICCV.2017.140

  48. Chen W, Chen X, Zhang J, Huang K (2017) Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 403–412. https://doi.org/10.1109/CVPR.2017.145

  49. Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010, Springer, pp 177–186. https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  50. Liao X, Li M, Zou Y, Wu F, Pan Y, Wang J (2019) An efficient trimming algorithm based on multi-feature fusion scoring model for ngs data. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2019.2897558

    Article  Google Scholar 

  51. Luo H, Wang J, Yan C, Li M, Wu F, Pan Y (2019) A novel drug repositioning approach based on collaborative metric learning. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2019.2926453

    Article  Google Scholar 

  52. Yang M, Luo H, Li Y, Wu FX, Wang J (2019) Overlap matrix completion for predicting drug-associated indications. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1007541

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grants No. 61772557, No. 61772552; the 111 Project (No. B18059); and the Hunan Provincial Science and Technology Program (2018 WK4001). This paper was recommended by CBC2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Q., Wang, J. & Liu, L. An Effective Convolutional Neural Network for Classifying Red Blood Cells in Malaria Diseases. Interdiscip Sci Comput Life Sci 12, 217–225 (2020). https://doi.org/10.1007/s12539-020-00367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00367-7

Keywords

Navigation