Skip to main content
Log in

Rational Minimax Iterations for Computing the Matrix pth Root

  • Published:
Constructive Approximation Aims and scope

Abstract

In a previous paper by the author, a family of iterations for computing the matrix square root was constructed by exploiting a recursion obeyed by Zolotarev’s rational minimax approximants of the function \(z^{1/2}\). The present paper generalizes this construction by deriving rational minimax iterations for the matrix pth root, where \(p \ge 2\) is an integer. The analysis of these iterations is considerably different from the case \(p=2\), owing to the fact that when \(p>2\), rational minimax approximants of the function \(z^{1/p}\) do not obey a recursion. Nevertheless, we show that several of the salient features of the Zolotarev iterations for the matrix square root, including equioscillatory error, order of convergence, and stability, carry over to the case \(p>2\). A key role in the analysis is played by the asymptotic behavior of rational minimax approximants on short intervals. Numerical examples are presented to illustrate the predictions of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akhiezer, N.I.: Theory of Approximation. Frederick Ungar Publishing Corporation, New York (1956)

    Google Scholar 

  2. Beckermann, B.: Optimally Scaled Newton Iterations for the Matrix Square Root. Advances in Matrix Functions and Matrix Equations workshop, Manchester (2013)

  3. Bini, D.A., Higham, N.J., Meini, B.: Algorithms for the matrix pth root. Numer. Algorithms 39, 349–378 (2005)

    Article  MathSciNet  Google Scholar 

  4. Byers, R., Xu, H.: A new scaling for Newton’s iteration for the polar decomposition and its backward stability. SIAM J. Matrix Anal. Appl. 30, 822–843 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cardoso, J.R., Loureiro, A.F.: Iteration functions for pth roots of complex numbers. Numer. Algorithms 57, 329–356 (2011)

    Article  MathSciNet  Google Scholar 

  6. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  7. Gawlik, E.S.: Zolotarev iterations for the matrix square root. SIAM J. Matrix Anal. Appl. 40, 696–719 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gawlik, E.S., Nakatsukasa, Y.: Approximating the \(p\)th Root by Composite Rational Functions. arXiv preprint arXiv:1906.11326 (2019)

  9. Gawlik, E.S., Nakatsukasa, Y., Sutton, B.D.: A backward stable algorithm for computing the CS decomposition via the polar decomposition. SIAM J. Matrix Anal. Appl. 39, 1448–1469 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gomilko, O., Greco, F., Ziętak, K.: A Padé family of iterations for the matrix sign function and related problems. Numer. Linear Algebra Appl. 19, 585–605 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gomilko, O., Karp, D.B., Lin, M., Ziętak, K.: Regions of convergence of a Padé family of iterations for the matrix sector function and the matrix pth root. J. Comput. Appl. Math. 236, 4410–4420 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gopal, A., Trefethen, L.N.: Representation of conformal maps by rational functions. Numer. Math. 142, 359–382 (2019)

    Article  MathSciNet  Google Scholar 

  13. Guo, C.-H.: On Newton’s method and Halley’s method for the principal pth root of a matrix. Linear Algebra Appl. 432, 1905–1922 (2010)

    Article  MathSciNet  Google Scholar 

  14. Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix \(p\)th root and its inverse. SIAM J. Matrix Anal. Appl. 28, 788–804 (2006)

    Article  MathSciNet  Google Scholar 

  15. Higham, N.J.: The Matrix Computation Toolbox. http://www.ma.man.ac.uk/~higham/mctoolbox Accessed 6 Nov 2018

  16. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  17. Higham, N.J., Lin, L.: A Schur–Padé algorithm for fractional powers of a matrix. SIAM J. Matrix Anal. Appl. 32, 1056–1078 (2011)

    Article  MathSciNet  Google Scholar 

  18. Higham, N.J., Lin, L.: An improved Schur–Padé algorithm for fractional powers of a matrix and their Fréchet derivatives. SIAM J. Matrix Anal. Appl. 34, 1341–1360 (2013)

    Article  MathSciNet  Google Scholar 

  19. Hoskins, W., Walton, D.: A faster, more stable method for computing the pth roots of positive definite matrices. Linear Algebra Appl. 26, 139–163 (1979)

    Article  MathSciNet  Google Scholar 

  20. Iannazzo, B.: On the Newton method for the matrix pth root. SIAM J. Matrix Anal. Appl. 28, 503–523 (2006)

    Article  MathSciNet  Google Scholar 

  21. Iannazzo, B.: A family of rational iterations and its application to the computation of the matrix pth root. SIAM J. Matrix Anal. Appl. 30, 1445–1462 (2008)

    Article  MathSciNet  Google Scholar 

  22. Karlin, S., Studden, W.: Tchebycheff Systems: With Applications in Analysis and Statistics, Pure and Applied Mathematics. Interscience Publishers, New York (1966)

    MATH  Google Scholar 

  23. King, R.F.: Improved Newton iteration for integral roots. Math. Comput. 25, 299–304 (1971)

    Article  MathSciNet  Google Scholar 

  24. Laszkiewicz, B., Ziętak, K.: A Padé family of iterations for the matrix sector function and the matrix pth root. Numer. Linear Algebra Appl. 16, 951–970 (2009)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Yang, H.: Interior Eigensolver for Sparse Hermitian Definite Matrices Based on Zolotarev’s Functions. arXiv preprint arXiv:1701.08935 (2017)

  26. Maehly, H., Witzgall, C.: Tschebyscheff-approximationen in kleinen Intervallen II. Numer. Math. 2, 293–307 (1960)

    Article  MathSciNet  Google Scholar 

  27. Meinardus, G., Taylor, G.: Optimal partitioning of Newton’s method for calculating roots. Math. Comput. 35, 1221–1230 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Nakatsukasa, Y., Bai, Z., Gygi, F.: Optimizing Halley’s iteration for computing the matrix polar decomposition. SIAM J. Matrix Anal. Appl. 31, 2700–2720 (2010)

    Article  MathSciNet  Google Scholar 

  29. Nakatsukasa, Y., Freund, R.W.: Computing fundamental matrix decompositions accurately via the matrix sign function in two iterations: the power of Zolotarev’s functions. SIAM Rev. 58, 461–493 (2016)

    Article  MathSciNet  Google Scholar 

  30. Smith, M.I.: A Schur algorithm for computing matrix \(p\)th roots. SIAM J. Matrix Anal. Appl. 24, 971–989 (2003)

    Article  MathSciNet  Google Scholar 

  31. Stahl, H.R.: Best uniform rational approximation of \(x^\alpha \) on [0, 1]. Acta Math. 190, 241–306 (2003)

    Article  MathSciNet  Google Scholar 

  32. Trefethen, L.N.: Approximation Theory and Approximation Practice, vol. 128. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  33. Trefethen, L.N., Gutknecht, M.H.: The Carathéodory–Fejér method for real rational approximation. SIAM J. Numer. Anal. 20, 420–436 (1983)

    Article  MathSciNet  Google Scholar 

  34. Trefethen, L.N., Gutknecht, M.H.: On convergence and degeneracy in rational Padé and Chebyshev approximation. SIAM J. Math. Anal. 16, 198–210 (1985)

    Article  MathSciNet  Google Scholar 

  35. Trefethen, L.N., Gutknecht, M.H.: Padé, stable Padé, and Chebyshev-Padé approximation. In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation, pp. 227–264. Clarendon Press, Oxford (1987)

    Google Scholar 

  36. Zolotarev, E.I.: Applications of elliptic functions to problems of functions deviating least and most from zero. Zapiski Imperatorskoj Akademii Nauk po Fiziko-Matematiceskomu Otdeleniju 30, 1–59 (1877)

    Google Scholar 

Download references

Acknowledgements

The author was supported in part by NSF Grant DMS-1703719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan S. Gawlik.

Additional information

Communicated by Wolfgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawlik, E.S. Rational Minimax Iterations for Computing the Matrix pth Root. Constr Approx 54, 1–34 (2021). https://doi.org/10.1007/s00365-020-09504-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-020-09504-3

Keywords

Mathematics Subject Classification

Navigation