Skip to main content
Log in

Hermite-Poulain Theorems for Linear Finite Difference Operators

  • Published:
Constructive Approximation Aims and scope

Abstract

We establish analogues of the Hermite-Poulain theorem for linear finite difference operators with constant coefficients defined on sets of polynomials with roots on a straight line, in a strip, or in a half-plane. We also consider the central finite difference operator of the form

$$\begin{aligned} \Delta _{\theta , h}(f)(z)=e^{i\theta }f(z+ih)-e^{-i\theta }f(z-ih), \quad \theta \in [0,\pi ),\ \ h\in \mathbb {C}{\setminus }\{0\}, \end{aligned}$$

where f is a polynomial or an entire function of a certain kind, and prove that the roots of \(\Delta _{\theta , h}(f)\) are simple under some conditions. Moreover, we prove that the operator \(\Delta _{\theta , h}\) does not decrease the mesh on the set of polynomials with roots on a line and find the minimal mesh. The asymptotics of the roots of \(\Delta _{\theta , h}(p)\) as \(|h|\rightarrow \infty \) are found for any complex polynomial p. Some other interesting roots preserving properties of the operator \(\Delta _{\theta , h}\) are also studied, and a few examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borcea, J., Brändén, P.: Pólya-Schur master theorems for circular domains and their boundaries. Ann. Math. (2) 170(1), 465–492 (2009)

    Article  MathSciNet  Google Scholar 

  2. Borcea, J., Brändén, P.: The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability. Invent. Math. 177(3), 541–569 (2009)

    Article  MathSciNet  Google Scholar 

  3. Borcea, J., Brändén, P.: The Lee-Yang and Pólya-Schur programs. II. Theory of stable polynomials and applications. Commun. Pure Appl. Math. 62(12), 1595–1631 (2009)

    Article  Google Scholar 

  4. Brändén, P., Chasse, M.: Classification theorems for operators preserving zeros in a strip. J. Anal. Math. 132(1), 177–215 (2017)

    Article  MathSciNet  Google Scholar 

  5. Brändén, P., Krasikov, I., Shapiro, B.: Elements of Pólya-Schur theory in finite difference settings. Proc. Am. Math. Soc. 144(11), 4831–4843 (2016)

    Article  Google Scholar 

  6. Cardon, D.A.: Complex zero decreasing operators. J. Math. Anal. Appl. 426(1), 406–422 (2015)

    Article  MathSciNet  Google Scholar 

  7. Craven, T., Csordas, G.: Complex zero decreasing sequences. Methods Appl. Anal. 2(4), 420–441 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Csordas, G., Smith, W.: Level sets and the distribution of zeros of entire functions. Michigan Math. J. 47(3), 601–612 (2000)

    Article  MathSciNet  Google Scholar 

  9. Csordas, G., Vishnyakova, A.: The generalized Laguerre inequalities and functions in the Laguerre-Pólya class. Cent. Eur. J. Math. 11(9), 1643–1650 (2013)

    MathSciNet  MATH  Google Scholar 

  10. de Bruijn, N.G.: The roots of trigonometric integrals. Duke Math. J. 17(3), 197–226 (1950)

    Article  MathSciNet  Google Scholar 

  11. Fisk, S.: Polynomials, roots, and interlacing (2008). arXiv:math/0612833

  12. Golitsyna, M.: Analytic closure of sets of real hyperbolic polynomials with separated roots. Eur. J. Math. 1(3), 641–653 (2015)

    Article  MathSciNet  Google Scholar 

  13. Hirschman, I., Widder, D.: The Convolution Transform. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  14. Holtz, O., Tyaglov, M.: Structured matrices, continued fractions, and root localization of polynomials. SIAM Rev. 54(3), 421–509 (2012)

    Article  MathSciNet  Google Scholar 

  15. Katkova, O., Tyaglov, M., Vishnyakova, A.: Linear finite difference operators preserving Laguerre-Pólya class. Complex Var. Elliptic Equ. 63(11), 1604–1619 (2017)

    Article  Google Scholar 

  16. Katkova, O., Shapiro, B., Vishnyakova, A.: Multiplier sequences and logarithmic mesh. Compt. Rendus Math. 349, 35–38 (2011)

    Article  MathSciNet  Google Scholar 

  17. Krein, M.G., Naimark, M.A.: The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations. Linear Multilinear Algebra 10, 265–308 (1981). Translated from the Russian by O. Boshko and J. L. Howland

    Article  MathSciNet  Google Scholar 

  18. Kuipers, L.: Note on the location of zeros of polynomials III. Simon Stevin 31, 61–72 (1957)

    MathSciNet  MATH  Google Scholar 

  19. Levin, B.: Distribution of zeros of entire functions, Transl. Math. Mono., 5, American Mathematics Society, Providence, RI (1964); revised ed. 1980

  20. Obreschkov, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963)

    Google Scholar 

  21. Pólya, G.: Collected Papers, Vol. II Location of Zeros, (R. Boas ed.) MIT Press, Cambridge (1974)

  22. Pólya, G.: Bemerkung über die Integraldarstellung der Riemannsche \(\xi \)-Funktion. Acta Math. 48, 305–317 (1926)

    Article  MathSciNet  Google Scholar 

  23. Pólya, G., Schur, J.: Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144, 89–113 (1914)

    MathSciNet  MATH  Google Scholar 

  24. Pólya, G., Szegö, G.: Problems and Theorems in Analysis I. Springe, Berlin (1998)

    Book  Google Scholar 

  25. Pólya, G., Szegö, G.: Problems and Theorems in Analysis II. Springer, Berlin (1998)

    Book  Google Scholar 

  26. Prasolov, V.V.: Polynomials. Springer, Berlin (2004)

    Book  Google Scholar 

  27. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  28. Stanley, R.: Enumerative Combinatorics, vol. I, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  29. Stoyanoff, A.: Sur un théorème de M Marcel Riesz. Nouvelles Annales de Mathematique 1(6), 97–99 (1926)

    MATH  Google Scholar 

  30. Takagi, T.: Note on the algebraic equations. Proc. Physico-Math. Soc. Jpn. (3) 3(11), 175–179 (1921)

    Google Scholar 

  31. Tyaglov, M.: Self-interlacing polynomials. Linear Algebra Appl. 535, 12–34 (2017)

    Article  MathSciNet  Google Scholar 

  32. Walsh, J.L.: On the location of the roots of certain types of polynomials. Trans. Am. Math. Soc. 24, 163–180 (1922)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for careful reading and helpful comments. The authors are also grateful to J. Xia for his help with preparing the first version of the manuscript. The work of Tyaglov was partially supported by The Program for Professor of Special Appointment (Oriental Scholar) at Shanghai Institutions of Higher Learning, by the Joint NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (No. 11561141001), and by Grant AF0710021 from Shanghai Jiao Tong University University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Tyaglov.

Additional information

Communicated by Kristian Seip.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katkova, O., Tyaglov, M. & Vishnyakova, A. Hermite-Poulain Theorems for Linear Finite Difference Operators. Constr Approx 52, 357–393 (2020). https://doi.org/10.1007/s00365-020-09507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-020-09507-0

Keywords

Mathematics Subject Classification

Navigation