Skip to main content

Advertisement

Log in

CO2 Reactive Absorption into an Aqueous Blended MDEA and TMS Solution: Experimental and Modeling

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

In this research, the significant environmental process of CO2 capture is investigated into an aqueous blended MDEA + TMS solution using a stirrer reactor experimentally and numerically. The experiments were designed based on the response surface methodology (RSM) under operating conditions of a pressure range of 2–8 bar, a temperature range of 20–70 °C, MDEA, and TMS concentration range of 10–20 wt%. The results indicated that by enhancing the initial pressure from 3.5 to 8 bar, the equilibrium CO2 loading increases by 17.8%. Based on RSM and central composite design method, the maximum values of CO2 loading and absorption percentages were 0.308% and 72.73%, respectively, at appropriate conditions of the temperature of 32.5 °C, the pressure of 3.5 bar, and MDEA and TMS concentrations of 12.5 wt%. A new relation for CO2 loading was correlated with a correlation coefficient of 0.994, as a function of studied independent variables.

Article Highlights

  • The environmental issue of CO2 absorption into an aqueous blended MDEA+TMS solution is studied.

  • The CO2 loading and absorption rate are maximized under optimal operating conditions.

  • A new correlation for CO2 loading is modeled as a function of independent variables based on RSM method.

  • Equilibrium CO2 loading was predicted by solving VLE, chemical equilibrium constant, mass and charge balance equations.

  • Effects of temperature on species concentrations in liquid bulk were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

P :

Pressure (bar)

T :

Temperature (K)

R :

Universal gas constant

G :

Gibbs energy

A ϕ :

Debye–Huckel parameter

a, b, c, d, e, f :

Constants

n :

Number of moles

m :

Molality (mol kg1)

Mw:

Molecular weight

ν :

Stoichiometric coefficient

v :

Volume fraction (%)

w :

Weight fraction (%)

K :

Chemical equilibrium constant

H :

Henry’s constant (MPa kg mol1)

Bo:

Boltzman constant (J K1) = 1.38065 × 1023

B :

Second virial coefficient

I :

Ionic strength

N A :

Avogadro's number (mol1) = 6.02205 × 1023

e :

Electron charge (C) = 1.602191019

z :

Charge of ion

D :

Dielectric constant

ρ :

Density (g mL1)

α CO2 :

CO2 loading

α H2O :

Water activity

β :

Binary interaction parameters

τ :

Tertiary interaction parameters

γ :

Activity coefficient

ε :

Permittivity (C N1 m2) = 8.854187 × 1012

i, j, k :

Numerators

i0:

Initial

mix:

Mixture

C:

Critical

eq:

Equilibrium

References

  • Adeosun A, Abbas Z, Abu-Zahra MR (2013) Screening and characterization of advanced amine based solvent systems for CO2 post-combustion capture. Energy Procedia 37:300–305

    Article  CAS  Google Scholar 

  • Adeyemi I, Abu-Zahra MR, Alnashef I (2017) Experimental study of the solubility of CO2 in novel amine based deep eutectic solvents. Energy Procedia 105:1394–1400

    Article  CAS  Google Scholar 

  • Bougie F, Iliuta MC (2009) CO2 absorption into mixed aqueous solutions of 2-amino-2-hydroxymethyl-1, 3-propanediol and piperazine. Ind Eng Chem Res 49:1150–1159

    Article  CAS  Google Scholar 

  • Bougie F, Iliuta MC (2011) CO2 absorption in aqueous piperazine solutions: experimental study and modeling. J Chem Eng Data 56:1547–1554

    Article  CAS  Google Scholar 

  • Das D, Meikap BC (2017) Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology. J Environ Sci Health Part A 52:1164–1172

    Article  CAS  Google Scholar 

  • Dash SK, Bandyopadhyay SS (2016) Studies on the effect of addition of piperazine and sulfolane into aqueous solution of N-methyldiethanolamine for CO2 capture and VLE modelling using eNRTL equation. Int J Greenhouse Gas Control 44:227–237

    Article  CAS  Google Scholar 

  • Du Y, Yuan Y, Rochelle GT (2016) Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture. Chem Eng Sci 155:397–404

    Article  CAS  Google Scholar 

  • El Hadri N, Quang DV, Goetheer EL, Zahra MRA (2017) Aqueous amine solution characterization for post-combustion CO2 capture process. Appl Energy 185:1433–1449

    Article  CAS  Google Scholar 

  • Fashi F, Ghaemi A, Behroozi AH (2020) Piperazine impregnation on Zeolite 13X as a novel adsorbent for CO2 capture: experimental and modeling. Chem Eng Commun. https://doi.org/10.1080/00986445.2020.1746657

    Article  Google Scholar 

  • Ghaemi A (2017) Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution. Pol J Chem Technol 19:75–82

    Article  CAS  Google Scholar 

  • Ghaemi A, Shahhosseini S, Maragheh MG (2009a) Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions. Chem Eng J 149:110–117

    Article  CAS  Google Scholar 

  • Ghaemi A, Shahhosseini S, Maragheh MG (2009b) Nonequilibrium modeling of reactive absorption processes. Chem Eng Commun 196:1076–1089

    Article  CAS  Google Scholar 

  • Irani V, Maleki A, Tavasoli A (2019) CO2 absorption enhancement in graphene-oxide/MDEA nanofluid. J Environ Chem Eng 7:102782

    Article  CAS  Google Scholar 

  • Isaacs EE, Otto FD, Mather AE (1977) Solubility of hydrogen sulfide and carbon dioxide in a sulfinol solution. J Chem Eng Data 22:317–319

    Article  CAS  Google Scholar 

  • Jalili AH, Shokouhi M, Samani F, Hosseini-Jenab M (2015) Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S). J Chem Thermodyn 85:13–25

    Article  CAS  Google Scholar 

  • Kachko A, van der Ham LV, Geers LF, Huizinga A, Rieder A, Abu-Zahra MR, Vlugt TJ, Goetheer EL (2015) Real-time process monitoring of CO2 capture by aqueous AMP-PZ using chemometrics: pilot plant demonstration. Ind Eng Chem Res 54:5769–5776

    Article  CAS  Google Scholar 

  • Kassim MA, Sairi NA, Yusoff R, Alias Y, Aroua MK (2016) Evaluation of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide–alkanolamine sulfolane-based system as solvent for absorption of carbon dioxide. Ind Eng Chem Res 55:7992–8001

    Article  CAS  Google Scholar 

  • Kazemi S, Ghaemi A, Tahvildari K (2019) Chemical absorption of carbon dioxide into aqueous piperazine solutions using a stirred reactor. Iran J Chem Chem Eng. http://www.ijcce.ac.ir/article_35175.html#ar_info_pnl_st

  • Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC (2013) Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions. Bull Korean Chem Soc 34:783–787

    Article  CAS  Google Scholar 

  • Liang ZH, Rongwong W, Liu H, Fu K, Gao H, Cao F, Zhang R, Sema T, Henni A, Sumon K (2015) Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents. Int J Greenhouse Gas Control 40:26–54

    Article  CAS  Google Scholar 

  • Liu H, Li M, Idem R, Tontiwachwuthikul PP, Liang Z (2017) Analysis of solubility, absorption heat and kinetics of CO2 absorption into 1-(2-hydroxyethyl) pyrrolidine solvent. Chem Eng Sci 162:120–130

    Article  CAS  Google Scholar 

  • Lu X, Xie P, Ingham D, Ma L, Pourkashanian M (2019) Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chem Eng Sci 199:302–318

    Article  CAS  Google Scholar 

  • Luo W, Guo D, Zheng J, Gao S, Chen J (2016) CO2 absorption using biphasic solvent: blends of diethylenetriamine, sulfolane, and water. Int J Greenhouse Gas Control 53:141–148

    Article  CAS  Google Scholar 

  • Macgregor RJ, Mather AE (1991) Equilibrium solubility of H2S and CO2 and their mixtures in a mixed solvent. Can J Chem Eng 69:1357–1366

    Article  CAS  Google Scholar 

  • Mesbah M, Momeni M, Soroush E, Shahsavari S, Galledari SA (2019) Theoretical study of CO2 separation from CO2/CH4 gaseous mixture using 2-methylpiperazine-promoted potassium carbonate through hollow fiber membrane contactor. J Environ Chem Eng 7:102781

    Article  CAS  Google Scholar 

  • Mirzaei F, Ghaemi A (2018) An experimental correlation for mass transfer flux of CO2 reactive absorption into aqueous MEA-PZ blended solution. Asia-Pac J Chem Eng 13:e2250

    Article  CAS  Google Scholar 

  • Mondal BK, Bandyopadhyay SS, Samanta AN (2017) Equilibrium solubility and enthalpy of CO2 absorption in aqueous bis (3-aminopropyl) amine and its mixture with MEA, MDEA, AMP and K2CO3. Chem Eng Sci 170:58–67

    Article  CAS  Google Scholar 

  • Murrieta-Guevara F, Rebolledo-Libreros E, Trejo A (1989) Gas solubilities of carbon dioxide and hydrogen sulfide in sulfolane and its mixtures with alkanolamines. Fluid Phase Equilib 53:1–6

    Article  CAS  Google Scholar 

  • Murrieta-Guevara F, Rebolledo-Libreros E, Trejo A (1993) Gas solubility of carbon dioxide and hydrogen sulfide in mixtures of sulfolane with monoethanolamine. Fluid Phase Equilib 86:225–231

    Article  CAS  Google Scholar 

  • Norouzbahari S, Shahhosseini S, Ghaemi A (2015) CO2 chemical absorption into aqueous solutions of piperazine: modeling of kinetics and mass transfer rate. J Nat Gas Sci Eng 26:1059–1067

    Article  CAS  Google Scholar 

  • Norouzbahari S, Shahhosseini S, Ghaemi A (2016) Chemical absorption of CO2 into an aqueous piperazine (PZ) solution: development and validation of a rigorous dynamic rate-based model. RSC Adv 6:40017–40032

    Article  CAS  Google Scholar 

  • Nurrokhmah L, Mezher T, Abu-Zahra MR (2013) Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE. Environ Sci Technol 47:13644–13651

    Article  CAS  Google Scholar 

  • Nwaoha C, Tontiwachwuthikul P, Benamor A (2018) CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: a pilot plant study. J Environ Chem Eng 6:7102–7110

    Article  CAS  Google Scholar 

  • Pashaei H, Ghaemi A, Nasiri M (2016) Modeling and experimental study on the solubility and mass transfer of CO2 into aqueous DEA solution using a stirrer bubble column. RSC Adv 6:108075–108092

    Article  CAS  Google Scholar 

  • Pashaei H, Zarandi MN, Ghaemi A (2017) Experimental study and modeling of CO2 absorption into diethanolamine solutions using stirrer bubble column. Chem Eng Res Des 121:32–43

    Article  CAS  Google Scholar 

  • Pashaei H, Ghaemi A, Nasiri M, Karami B (2020) Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology. ACS Omega 5:8423–8431

    Article  CAS  Google Scholar 

  • Penttilä A, Dell’Era C, Uusi-Kyyny P, Alopaeus V (2011) The Henry's law constant of N2O and CO2 in aqueous binary and ternary amine solutions (MEA, DEA, DIPA, MDEA, and AMP). Fluid Phase Equilib 311:59–66

    Article  CAS  Google Scholar 

  • Qian W-M, Li Y-G, Mather AE (1995) Correlation and prediction of the solubility of CO2 and H2S in an aqueous solution of methyldiethanolamine and sulfolane. Ind Eng Chem Res 34:2545–2550

    Article  CAS  Google Scholar 

  • Ramezanipour Penchah H, Ghaemi A, Ganadzadeh Gilani H (2019) Benzene-based hyper-cross-linked polymer with enhanced adsorption capacity for CO2 capture. Energy Fuels 33:12578–12586

    Article  CAS  Google Scholar 

  • Roberts BE, Mather AE (1988) Solubility of CO2 and H2S in a mixed solvent. Chem Eng Commun 72:201–211

    Article  CAS  Google Scholar 

  • Rumpf B, Maurer G (1993) An experimental and theoretical investigation on the solubility of carbon dioxide in aqueous solutions of strong electrolytes. Berichte der Bunsengesellschaft fuer physikalische chemie 97:85–97

    Article  CAS  Google Scholar 

  • Saeidi M, Ghaemi A, Tahvildari K, Derakhshi P (2018) Exploiting response surface methodology (RSM) as a novel approach for the optimization of carbon dioxide adsorption by dry sodium hydroxide. J Chin Chem Soc 65:1465–1475

    Article  CAS  Google Scholar 

  • Saghafi H, Ghiasi MM, Mohammadi AH (2017) Analyzing the experimental data of CO2 equilibrium absorption in the aqueous solution of DEA+ MDEA with Random Forest and Leverage method. Int J Greenhouse Gas Control 63:329–337

    Article  CAS  Google Scholar 

  • Saul A, Wagner W (1987) International equations for the saturation properties of ordinary water substance. J Phys Chem Ref Data 16:893–901

    Article  CAS  Google Scholar 

  • Shirazizadeh HA, Haghtalab A (2019) Simultaneous solubility measurement of (ethyl mercaptan + carbon dioxide) into the aqueous solutions of (N-methyl diethanolamine + sulfolane + water). J Chem Thermodyn 133:111–122

    Article  CAS  Google Scholar 

  • Shokouhi M, Jalili AH, Zoghi AT, Ahari JS (2019) Carbon dioxide solubility in aqueous sulfolane solution. J Chem Thermodyn 132:62–72

    Article  CAS  Google Scholar 

  • Taheri FS, Ghaemi A, Maleki A, Shahhosseini S (2019) High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite. Energy Fuels 33:5384–5397

    Article  CAS  Google Scholar 

  • Wang C-W, Soriano AN, Yang Z-Y, Li M-H (2010) Solubility of carbon dioxide in the solvent system (2-amino-2-methyl-1-propanol + sulfolane + water). Fluid Phase Equilib 291:195–200

    Article  CAS  Google Scholar 

  • Yuan Y, Rochelle GT (2018) CO2 absorption rate in semi-aqueous monoethanolamine. Chem Eng Sci 182:56–66

    Article  CAS  Google Scholar 

  • Zong L, Chen C (2011) Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane–DIPA solution, and aqueous sulfolane–MDEA solution with electrolyte NRTL model. Fluid Phase Equilib 306:190–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Ghaemi.

Appendix

Appendix

See Tables 7, 8 and 9.

Table 7 Design expert results to get experimental data in the MDEA + TMS + CO2 + H2O system
Table 8 ANOVA results based on RMS-CCD method to model CO2 loading
Table 9 Optimum conditions and values based on numerical optimization results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behroozi, A.H., Akbarzad, N. & Ghaemi, A. CO2 Reactive Absorption into an Aqueous Blended MDEA and TMS Solution: Experimental and Modeling. Int J Environ Res 14, 347–363 (2020). https://doi.org/10.1007/s41742-020-00261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-020-00261-6

Keywords

Navigation