Skip to main content

Advertisement

Log in

A Novel Approach of Face Recognition Using Optimized Adaptive Illumination–Normalization and KELM

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Light variations from different directions on the face images cause severe performance degradation in face recognition system. These variations should be nullified or suppressed so that the recognition performance can be improved. Here, the objective is to develop a robust and pragmatic method which can compensate the effect of uncontrolled light incident from different directions on the person’s face. To normalize the effect of unpredictable illumination variations from face images, a novel illumination–normalization method is proposed by utilizing the fractional discrete cosine transform (Fr-DCT) and a nonlinear modifier. Fr-DCT provides a generalized α-domain in which illumination variation’s effect can be better processed. The proposed method adaptively selects and processes the low-frequency α-domain coefficients depending upon the light variations incident on the face image. The illumination-normalized images are classified with the help of a non-iterative classifier. The parameters of the proposed method are optimized with the help of genetic algorithm. The proposed method is tested over Extended YALE B, AR, CMU PIE and YALE face databases. Very promising results have been achieved with percentage error rate zero for CMU PIE and subset 3 of Extended YALE B, 0.38% for subset 4 and 0.55% for subset 5. On AR database, error rate is 0.5% when only illumination-varying images are considered for testing. The comparison of the results of the proposed method with those of the existing state-of-the-art methods clearly establishes the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh, D.; Kumar, V.: Comprehensive survey on haze removal techniques. Multimed. Tools Appl. 77, 9595–9620 (2018)

    Google Scholar 

  2. Singh, D.; Kumar, V.: A comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 26, 1395–1413 (2019)

    Google Scholar 

  3. Mehta, R.; Gill, D.S.; Pannu, H.S.: Remote sensing image contrast and brightness enhancement based on Cuckoo search and DTCWT-SVD. In: 2016 International Conference on Inventive Computation Technologies (ICICT), pp. 1–6 (2016)

  4. Luan, X.; Fang, B.; Liu, L.; Yang, W.; Qian, J.: Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion. Pattern Recognit. 47, 495–508 (2014)

    Google Scholar 

  5. McLaughlin, N.; Ming, J.; Crookes, D.: Largest matching areas for illumination and occlusion robust face recognition. IEEE Trans. Cybern. 47, 796–808 (2017)

    Google Scholar 

  6. Zhang, W.; Xi, Z.; Morvan, J.-M.; Chen, L.: Improving shadow suppression for illumination robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41, 611–624 (2018)

    Google Scholar 

  7. Singh, D.; Kumar, V.: Single image defogging by gain gradient image filter. Sci. China Inf. Sci. 62, 79101 (2008)

    MathSciNet  Google Scholar 

  8. Singh, D.; Kumar, V.: Modified gain intervention filter based dehazing technique. J. Mod. Opt. 64, 2165–2178 (2017)

    Google Scholar 

  9. Singh, D.; Kumar, V.: Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Comput. Vis. 12, 208–219 (2017)

    Google Scholar 

  10. Singh, D.; Kumar, V.: Image dehazing using Moore neighborhood-based gradient profile prior. Signal Process. Image Commun. 70, 131–144 (2019)

    Google Scholar 

  11. Shim, H.; Luo, J.; Chen, T.: A subspace model-based approach to face relighting under unknown lighting and poses. IEEE Trans. Image Process. 17, 1331–1341 (2008)

    MathSciNet  Google Scholar 

  12. Vishwakarma, V.P.: Illumination normalization using fuzzy filter in DCT domain for face recognition. Int. J. Mach. Learn. Cybern. 6, 17–34 (2015)

    Google Scholar 

  13. Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001)

    Google Scholar 

  14. Wang, H.; Li, S.Z.; Wang, Y.; Zhang, J.: Self quotient image for face recognition. In: 2004 International Conference on Image Processing, 2004. ICIP’04, pp. 1397–1400 (2004)

  15. Chen, T.; Yin, W;, Zhou, X.S., Comaniciu, D.; Huang, T.S.: Illumination normalization for face recognition and uneven background correction using total variation based image models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, pp. 532–539 (2005)

  16. Chen, W.; Er, M.J.; Wu, S.: Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans. Syst. Man Cybern. Part B 36, 458–466 (2006)

    Google Scholar 

  17. Zou, X.; Kittler, J.; Messer, K.: Illumination invariant face recognition: a survey. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007, pp. 1–8 (2007)

  18. Han, H.; Shan, S.; Chen, X.; Gao, W.: A comparative study on illumination preprocessing in face recognition. Pattern Recognit. 46, 1691–1699 (2013)

    Google Scholar 

  19. Ding, C.; Tao, D.: A comprehensive survey on pose-invariant face recognition. ACM Trans. Intell. Syst. Technol. 7, 37 (2016)

    Google Scholar 

  20. Vishwakarma, V.P.; Pandey, S.; Gupta, M.N.: A novel approach for face recognition using DCT coefficients re-scaling for illumination normalization. In: International Conference on Advanced Computing and Communications, 2007. ADCOM 2007, pp. 535–539 (2007)

  21. Vishwakarma, V.P.; Pandey, S.; Gupta, M.N.: An illumination invariant accurate face recognition with down scaling of DCT coefficients. J. Comput. Inf. Technol. 18, 53–67 (2010)

    Google Scholar 

  22. Vishwakarma, V.P.; Pandey, S.; Gupta, M.N.: Adaptive histogram equalization and logarithm transform with rescaled low frequency DCT coefficients for illumination normalization. Int. J. Recent Trends Eng. 1, 318–322 (2009)

    Google Scholar 

  23. Ruiz-del-Solar, J.; Quinteros, J.: Illumination compensation and normalization in eigenspace-based face recognition: a comparative study of different pre-processing approaches. Pattern Recognit. Lett. 29, 1966–1979 (2008)

    Google Scholar 

  24. Vu, N.-S.; Caplier, A.: Illumination-robust face recognition using retina modeling. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3289–3292 (2009)

  25. Tan, X.; Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Gross, R.; Baker, S.; Matthews, I.; Kanade, T.: Face recognition across pose and illumination. In: Li, S.Z., Jain, A.K. (eds.) Handbook of face recognition, pp. 197–221. Springer, London (2011)

    Google Scholar 

  27. Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)

    Google Scholar 

  28. Fan, C.-N.; Zhang, F.-Y.: Homomorphic filtering based illumination normalization method for face recognition. Pattern Recognit. Lett. 32, 1468–1479 (2011)

    Google Scholar 

  29. Shahamat, H.; Pouyan, A.A.: Face recognition under large illumination variations using homomorphic filtering in spatial domain. J. Vis. Commun. Image Represent. 25, 970–977 (2014)

    Google Scholar 

  30. Wang, B.; Li, W.; Yang, W.; Liao, Q.: Illumination normalization based on Weber’s law with application to face recognition. IEEE Signal Process. Lett. 18, 462–465 (2011)

    Google Scholar 

  31. Wu, Y.; Jiang, Y.; Zhou, Y.; Li, W.; Lu, Z.; Liao, Q.: Generalized Weber-face for illumination-robust face recognition. Neurocomputing 136, 262–267 (2014)

    Google Scholar 

  32. Arandjelovic, O.: Gradient edge map features for frontal face recognition under extreme illumination changes. In: BMVC 2012: Proceedings of the British Machine Vision Association Conference, pp. 1–11 (2012)

  33. Cao, X.; Shen, W.; Yu, L.G.; Wang, Y.L.; Yang, J.Y.; Zhang, Z.W.: Illumination invariant extraction for face recognition using neighboring wavelet coefficients. Pattern Recognit. 45, 1299–1305 (2012)

    Google Scholar 

  34. Zhao, X.; Shah, S.K.; Kakadiaris, I.A.: Illumination normalization using self-lighting ratios for 3d2d face recognition. In: European Conference on Computer Vision, pp. 220–229 (2012)

  35. Wagner, A.; Wright, J.; Ganesh, A.; Zhou, Z.; Mobahi, H.; Ma, Y.: Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 372–386 (2012)

    Google Scholar 

  36. De Marsico, M.; Nappi, M.; Riccio, D.; Wechsler, H.: Robust face recognition for uncontrolled pose and illumination changes. IEEE Trans. Syst. Man Cybern. Syst. 43, 149–163 (2013)

    Google Scholar 

  37. Kim, W.; Suh, S.; Hwang, W.; Han, J.-J.: SVD face: illumination-invariant face representation. IEEE Signal Process. Lett. 21, 1336–1340 (2014)

    Google Scholar 

  38. Schroff, F.; Kalenichenko, D.; Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

  39. Arulkumar, C. V.; Vivekanandan, P.: Multi-feature based automatic face identification on kernel eigen spaces (KES) under unstable lighting conditions. In: 2015 International Conference on Advanced Computing and Communication Systems, pp. 1–5 (2015)

  40. Shah, J.H.; Sharif, M.; Raza, M.; Murtaza, M.: Robust face recognition technique under varying illumination. J. Appl. Res. Technol. 13, 97–105 (2015)

    Google Scholar 

  41. Samet, H.: K-nearest neighbor finding using MaxNearestDist. IEEE Trans. Pattern Anal. Mach. Intell. 30, 243–252 (2008)

    Google Scholar 

  42. Xu, Y.; Zhang, Z.; Lu, G.; Yang, J.: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification. Pattern Recognit. 54, 68–82 (2016)

    Google Scholar 

  43. Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W.: Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst. Appl. 47, 23–34 (2016)

    Google Scholar 

  44. Ding, C.; Choi, J.; Tao, D.; Davis, L.S.: Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38, 518–531 (2016)

    Google Scholar 

  45. Kakadiaris, I.A.; Toderici, G.; Evangelopoulos, G.; Passalis, G.; Chu, D.; Zhao, X.; Shah, S.K.; Theoharis, T.: 3D–2D face recognition with pose and illumination normalization. Comput. Vis. Image Underst. 154, 137–151 (2017)

    Google Scholar 

  46. Chen, Z.; Huang, W.; Lv, Z.: Towards a face recognition method based on uncorrelated discriminant sparse preserving projection. Multimed. Tools Appl. 76, 17669–17683 (2017)

    Google Scholar 

  47. Gupta, O.; Raviv, D.; Raskar, R.: Illumination invariants in deep video expression recognition. Pattern Recognit. 76, 25–35 (2018)

    Google Scholar 

  48. Yadav, J.; Rajpal, N.; Mehta, R.: A new illumination normalization framework via homomorphic filtering and reflectance ratio in DWT domain for face recognition. J. Intell. Fuzzy Syst. 35, 5265–5277 (2018)

    Google Scholar 

  49. Yadav, J.; Rajpal, N.; Mehta, R.: An improved hybrid illumination normalisation and feature extraction model for face recognition. Int. J. Appl. Pattern Recognit. 5, 149–170 (2018)

    Google Scholar 

  50. Cheng, Y.; Jiao, L.; Tong, Y.; Li, Z.; Hu, Y.; Cao, X.: Directional illumination estimation sets and multilevel matching metric for illumination-robust face recognition. IEEE Access. 5, 25835–25845 (2017)

    Google Scholar 

  51. Zhang, T.; Tang, Y.Y.; Fang, B.; Shang, Z.; Liu, X.: Face recognition under varying illumination using gradientfaces. IEEE Trans. Image Process. 18, 2599–2606 (2009)

    MathSciNet  MATH  Google Scholar 

  52. Lee, P.-H.; Wu, S.-W.; Hung, Y.-P.: Illumination compensation using oriented local histogram equalization and its application to face recognition. IEEE Trans. Image Process. 21, 4280–4289 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Hui-xian, Y.; Yong-yong, C.: Adaptively weighted orthogonal gradient binary pattern for single sample face recognition under varying illumination. IET Biom. 5, 76–82 (2016)

    Google Scholar 

  54. Xie, X.; Zheng, W.-S.; Lai, J.; Yuen, P.C.; Suen, C.Y.: Normalization of face illumination based on large-and small-scale features. IEEE Trans. Image Process. 20, 1807–1821 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Hamza, R.; Hassan, A.; Huang, T.; Ke, L.; Yan, H.: An efficient cryptosystem for video surveillance in the internet of things environment. Complexity 2019, 1625678 (2019). https://doi.org/10.1155/2019/1625678

  56. Gonzalez, R.C.; Woods, R.E.; Masters, B.R.: Digital image processing. J. Biomed. Opt. 14, 029901 (2008). https://doi.org/10.1117/1.3115362

    Article  Google Scholar 

  57. Vishwakarma, V.P.; Dalal, S.: Generalized DCT and DWT hybridization based robust feature extraction for face recognition. J. Inf. Optim. Sci. 41, 61–72 (2020)

    Google Scholar 

  58. Cariolaro, G.; Erseghe, T.; Kraniauskas, P.: The fractional discrete cosine transform. IEEE Trans. Signal Process. 50, 902–911 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Hamza, R.; Hassan, A.; Patil, A.S.: A lightweight secure IoT surveillance framework based on DCT-DFRT algorithms. In: International Conference on Machine Learning for Cyber Security, pp. 271–278 (2019)

  60. Huang, G.-B.; Chen, L.; Siew, C.K.: others: universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17, 879–892 (2006)

    Google Scholar 

  61. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Google Scholar 

  62. Dalal, S.; Vishwakarma, V.P.; Sisaudia, V.: ECG classification using kernel extreme learning machine. In: 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2018), pp. 988–992 (2018)

  63. Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42, 513–529 (2012)

    Google Scholar 

  64. Zhang, L.; Zhang, D.; Tian, F.: SVM and ELM: who wins? Object recognition with deep convolutional features from ImageNet. In: Proceedings of ELM-2015, vol. 1, pp. 249–263. Springer (2016)

  65. Vishwakarma, V.P.; Dalal, S.: A novel approach for compensation of light variation effects with KELM classification for efficient face recognition. In: International Conference on VLSI, Communication and Signal Processing (VCAS 2018) (2018)

  66. Wong, C.M.; Vong, C.M.; Wong, P.K.; Cao, J.: Kernel-based multilayer extreme learning machines for representation learning. IEEE Trans. Neural Netw. Learn. Syst. 29, 757–762 (2016)

    MathSciNet  Google Scholar 

  67. Goldberg, D.E.; Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Google Scholar 

  68. Chen, W.; Panahi, M.; Pourghasemi, H.R.: Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. CATENA 157, 310–324 (2017)

    Google Scholar 

  69. Metawa, N.; Hassan, M.K.; Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions. Expert Syst. Appl. 80, 75–82 (2017)

    Google Scholar 

  70. Gonzalez, R.; Woods, R.: Digital Image Processing. Pearson Education, Noida (2006)

    Google Scholar 

  71. Kim, Y.-H.; Kim, H.; Kim, S.-W.; Kim, H.-Y.; Ko, S.-J.: Illumination normalisation using convolutional neural network with application to face recognition. Electron. Lett. 53, 399–401 (2017)

    Google Scholar 

  72. Zhao, F.; Huang, Q.; Gao, W.: Image matching by normalized cross-correlation. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings, pp. II 729–II 732 (2006)

  73. Lee, K.C.; Ho, J.; Kriegman, D.J.: Extended Yale B face database (2005)

  74. Martinez, A.R.; Benavente, R.: The AR face database, 1998. Comput. Vis. Center Tech. Rep. 3, 5 (2007)

    Google Scholar 

  75. Sim, T.; Baker, S.; Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002. Proceedings, pp. 53–58 (2002)

  76. Georghiades, A.: Yale face database, http://cvc.yale.edu/projects/yalefaces/yalefaces.html. Accessed 10 Sept 1997

  77. Vishwakarma, V.P.; Dalal, S.: A novel non-linear modifier for adaptive illumination normalization for robust face recognition. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-08537-6

    Article  Google Scholar 

  78. Faraji, M.R.; Qi, X.: Face recognition under varying illumination with logarithmic fractal analysis. IEEE Signal Process. Lett. 21, 1457–1461 (2014)

    Google Scholar 

  79. Lee, K.-C.; Ho, J.; Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27, 684–698 (2005)

    Google Scholar 

  80. Huang, S.-M.; Yang, J.-F.: Improved principal component regression for face recognition under illumination variations. IEEE Signal Process. Lett. 19, 179–182 (2012)

    Google Scholar 

  81. Vishwakarma, V.P.; Goel, T.: An efficient hybrid DWT-fuzzy filter in DCT domain based illumination normalization for face recognition. Multimed. Tools Appl. 78, 15213–15233 (2019)

    Google Scholar 

  82. Vishwakarma, V.P.: Deterministic learning machine for face recognition with multi-model feature extraction. In: 2016 Ninth International Conference on Contemporary Computing (IC3), pp. 1–6 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra P. Vishwakarma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, S., Vishwakarma, V.P. A Novel Approach of Face Recognition Using Optimized Adaptive Illumination–Normalization and KELM. Arab J Sci Eng 45, 9977–9996 (2020). https://doi.org/10.1007/s13369-020-04566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04566-8

Keywords

Navigation