Skip to main content
Log in

Experimental Study of Rock Creep under True Triaxial Loading

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2020

This article has been updated

Abstract

The aim of this sutdy is to research the time dependence of deformations under complex stress conditions arising in the ground formation during the exploitation of oil and gas fields. The experiments were carried out on the IP Mech triaxial independent loading test system on the rocks of the Prirazlomnoye oil field using loading programs simulating the stress state in the near-borehole region with a decrease in pressure in the well. Experimental dependences of deformations on time during step loading are presented. The basic requirements for constructing a model of a stress-strain state taking into account the influence of time effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 31 August 2020

    erratum

References

  1. P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physical Principles of Plastic Deformation (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  2. L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1976), Vol. 2 [in Russian].

    Google Scholar 

  3. P. V. Trusov, P.S. Volegov, and N.S. Kondratyev, Physical Theories of Plasticity (Izd. PNIPU, Perm’, 2013) [in Russian].

    Google Scholar 

  4. B. C. Wonsiewicz and W. A. Backofen, “Plasticity of Magnesium Crystals,” Trans AIME. 239, 1422–1431 (1967).

    Google Scholar 

  5. A. M. Vlasova and A. G. Kesarev, “Deformation Model of Magnesium Single Crystals,” Izv. Vyssh. Uchebn. Zav., Fiz., No. 7, 68–78 (2018). [Russ. Phys. J. (Engl. Transl.) 61, 1258–1269 (2018)].

    Google Scholar 

  6. C. Teodosiu, Elastic Models of Crystal Defects (Editura Academiei, 1982; Mir, Moscow, 1985).

    MATH  Google Scholar 

  7. Yu. N. Loginov, V. D. Solovei, and V. V. Kotov, “Transformation of the Yielding Condition During the Deformation of HCP Metallic Materials,” Rus. Metallurg. (Metally) 2010 (3), 235–240 (2010).

    Article  ADS  Google Scholar 

  8. R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950; Gostekhizdat, Moscow, 1956).

    MATH  Google Scholar 

  9. E. W. Kelly and W. F. Hosford, “Plane-Strain Compression of Magnesium and Magnesium Alloy Crystals,” Trans. Metallur. Soc. AIME 242, 5–13 (1968).

    Google Scholar 

  10. K. D. Molodov, T. Al-Samman, and D. A. Molodov, “On the Diversity of the Plastic Response of Magnesium in Plane Strain Compression,” Mat. Sci. Engng A. 651, 63–68 (2016).

    Article  Google Scholar 

  11. A. Chapius and J. H. Driver, “Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals,” Acta Mat. 59, 1986–1994 (2011).

    Article  Google Scholar 

  12. T. Obara, H. Yoshinaga, and S. Morozumy, “\(\left\{{11\overline 2 2} \right\}\)\(\left\langle {\overline 1 \overline 1 23} \right\rangle \) Slip System in Magnesium,” Acta Metallurg. 21, 845–853 (1973).

    Article  Google Scholar 

  13. H. Yoshinaga and R. Horiuchi, “Deformation Mechanisms in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis,” Trans. JIM. 4, 1–8 (1963).

    Article  Google Scholar 

  14. H. Tonda and S. Ando, “Effect of Temperature and Shear Direction on Yield Stress by Silp in HCP Metals,” Met. Mater. Trans. A. 32 (A), 831–836 (2002).

    Article  Google Scholar 

  15. J. Zhang and S. P. Joshi, “Phenomenological Crystal Plasticity Modeling and Detailed Micromechanical Investigations of Pure Magnesium,” J. Mech. Phys. Sol. 60, 945–972 (2012).

    Article  ADS  Google Scholar 

  16. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, Roentgenography and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  17. A. G. Kurosh, A Course of Higher Algerba (Nauka, Fizmatlit, Moscow, 1971) [in Russian].

    Google Scholar 

  18. V. V. Fedorchuk, A Course in Analytical Geometry and Linear Algebra (Izd. Mos. Gos. Univ., Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  19. W. F. Shelly and R. R. Nash, “Mechanical Properties of Magnesium Monocrystals,” Trans. Metallurg. Soc. AIME 218, 416–423 (1960).

    Google Scholar 

  20. N. N. Kalitkin, Numerical Methods: Tutorial (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  21. N. S. Bachvalov, N. P. Zhidkov, and G. M. Kobelkov, Numerical Methods (Lab. Baz. Znaniy, Moscow, 2001) [in Russian].

    Google Scholar 

  22. W. B. Hutchinson and M. R. Barnett, “Effective Values of Critical Resolved Shear Stress for Slip in Polycrystalline Magnesium and Other hcp Metals,” Scrip. Mat. 63, 737–740 (2010).

    Article  Google Scholar 

  23. H. Yoshinaga and R. Hotiuchi, “Work Hardening Characteristics of the Basal Slip of Magnesium Single Crystals,” Trans. JIM. 3, 220–226 (1962).

    Article  Google Scholar 

  24. A. G. Kesarev and A. M. Vlasova, “Modified Sachs’s Model of Deformation of Polycrystalline Magnesium,” Rus. Phys. J. 60 (5), 890–899 (2017).

    Article  Google Scholar 

  25. V. A. Sevastyanov, Course of the Theory of Probability and Mathematical Statistics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation, Project No. 16-11-10325-P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Karev or K. B. Ustinov.

Additional information

Russian Text © Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 6, pp. 30–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karev, V.I., Kilmov, D.M., Kovalenko, Y.F. et al. Experimental Study of Rock Creep under True Triaxial Loading. Mech. Solids 54, 1151–1156 (2019). https://doi.org/10.3103/S0025654419080041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419080041

Keywords

Navigation