Skip to main content

Advertisement

Log in

Microstructure and properties of YG8 cemented carbide with different pulse currents

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to study the effect of pulse current treatment on the mechanical properties, microstructure and cutting performance of YG8 cemented carbide, experiments were carried out by using self-made pulse current treatment device to treat cemented carbide samples with different current densities (J = 5, 10 and 15 A·mm−2). After the treatment of pulse current, when the current density increased from 5 to 15 A·mm−2, the hardness of the sample was improved to HV 1605, HV 1629 and HV 1653 from HV 1574; the transverse rupture strengths of the sample were 2136, 2289 and 2364 MPa, which were all higher than that of the untreated sample (2062 MPa), increasing by 3.6%, 11.0% and 14.6%, respectively; the corresponding cutting performance was increased by 10.1%, 13.9% and 19.4%, compared to that of the untreated tool. The tool’s life was also improved. After the treatment of pulse current, pulse current provided the driving force for dislocation motion, making it more likely for the dislocation to multiply and slip, the dislocation density was increased, and the mechanical properties were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu JM, Hu H, Fu W, Li J, Jiang YM. Behaviors and mechanisms of friction and wear of special alloys at high temperature. J Steel Res. 2014;26(11):60.

    CAS  Google Scholar 

  2. Lin J, Zhao HY, Cai ZP, Huang SW, Lu XM, Ni SF. Reducing residual stresses in engineering structures by pulsed magnetic treatments. Tsinghua Univ (Sci & Tech). 2007;47(2):161.

    CAS  Google Scholar 

  3. Jiang Z, Wang L, Shi L, Wu YY. Study on tool wear mechanism and characteristics of carbide tools in cutting Ti6Al4V. J Mech Eng. 2014;50(1):178.

    Article  CAS  Google Scholar 

  4. Wang X. Research on Prolonging Service Life of Cutting Tools Treated by Pulse Magnetization. Dalian: Dalian University of Technology; 2007. 1.

    Google Scholar 

  5. Li F, Regel LL, Wilcox WR. The influence of electric current pulses on the microstructure of the MnBi/Bi eutectic. J Cryst Growth. 2001;223(1):251.

    Article  CAS  Google Scholar 

  6. Basmak JP, Sprecher AF, Conrad H. Colony(grain)size reduction of eutectic Pb-Sn castings by electropulsing. Scr Metall Mater. 1995;32(6):879.

    Article  Google Scholar 

  7. Liao X, Zhai Q, Luo J. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater. 2007;55(9):3103.

    Article  CAS  Google Scholar 

  8. Conrad H. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid. Mater Sci Eng A. 2000;287(2):205.

    Article  Google Scholar 

  9. Gao M, He GH, Yang F, Guo JD, Yuan ZX, Zhou BL. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy. Mater Sci Eng A. 2002;337(1–2):110.

    Article  Google Scholar 

  10. Liao XL, Zhai QJ, Song CJ, Chen WJ, Gong YY. Effects of electric current pulse on stability of solid/liquid interface of Al–4.5 wt% Cu alloy during directional solidification. Mater Sci Eng A. 2007;466(1–2):56.

    Article  CAS  Google Scholar 

  11. Song JL, Gi MF, Tang P, Liu JL, Qiu DS, Wang ZC. Reseach on fatigue properties of TC11 titanium alloy after electric pulse processing. Chin J Rare Met. 2018;42(7):691.

    Google Scholar 

  12. Zhang YL, Hou HL, Wang YQ. Superplasticity and microstructure evolution of 1420 Al–Li alloy with current pulse. Chin J Rare Met. 2017;41(12):1299.

    Google Scholar 

  13. Lv BC, Zhou YZ, Wang BQ, Guo JD. Effect of electropulsing on the fatigued heat-rolled 30CrMnSiA steel. Chin J Mater Res. 2003;17(1):16.

    Google Scholar 

  14. Levitin VV, Loskutov SV. The effect of a current pulse on the fatigue of titanium alloy. Solid State Commun. 2004;131(3):181.

    Article  CAS  Google Scholar 

  15. Zhou YZ, Luo S, Ben HX, He GH. Experimental study on crack healing in steel using electric current pulse technique. Chin J Mater Res. 2003;17(2):169.

    CAS  Google Scholar 

  16. Yan J, Cen Q, Jiang Y, Zhou R. As-cast microstructure of high-boron middle-carbon alloy tool steel. J Mater Eng. 2013;6:55.

    Google Scholar 

  17. Zhan LC, Chi HX, Ma DS, Fu R, Jiang YH. The as-cast microstructure of ESR-CDS M2 high speed steel. J Mater Eng. 2013;24(7):29.

    Article  CAS  Google Scholar 

  18. Li QY, Cen QH, Jiang YH, Zhou RF. Effects of electric pulse on solidification structure of high-boron middle-carbon alloy steel. Special Cast Nonferrous Alloys. 2012;32(12):1095.

    CAS  Google Scholar 

  19. Zhou JL, Huang ST, Peng RQ. Experimental research of cutting surface roughness for 45-hardened steel. Tool Technol. 2009;43(1):46.

    Google Scholar 

  20. Liu J, Wei C, Yang G, Wang LB, Wang L, Wu XL, Jiang K, Yang Y. A novel combined electromagnetic treatment on cemented carbides for improved milling and mechanical performances. Metall Mater Trans A. 2018;49(10):4798.

    Article  CAS  Google Scholar 

  21. Yang Q, Zang HB. Effect of high-density pulse current treatment on microstructure and properties of GCr15 steel. Heat Treat Met. 2016;41(2):109.

    CAS  Google Scholar 

  22. Antolovich SD, Conrad H. The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: an interpretive survey. Mater Manuf Process. 2004;19(4):587.

    Article  CAS  Google Scholar 

  23. Chen ZX, Ding HS, Chen RR, Guo JJ, Fu HZ. Microstructural evolution and mechanism of solidified TiAl alloy applied electric current pulse. Acta Metall Sin. 2019;55(5):611.

    Google Scholar 

  24. Yang C, Xu WC, Guo B, Shan DB, Zhang J. Healing of fatigue crack in 1045 Steel by using Eddy current treatment. Materials. 2016;9(8):641.

    Article  CAS  Google Scholar 

  25. Song H, Wang ZJ. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing. Mater Sci Eng A. 2008;490(1):1.

    Article  CAS  Google Scholar 

  26. Wang ZJ, Song H, Wang Z. Deformation behavior of TC1 titanium alloy sheet under double-sided pressure. Trans Nonferrous Met Soc China. 2008;18(1):72.

    Article  CAS  Google Scholar 

  27. Song H, Wang Z. Improvement of mechanical properties of cold-rolled commercially pure Ti sheet by high density electropulsing. Trans Nonferrous Met Soc China. 2012;22(6):1350.

    Article  CAS  Google Scholar 

  28. Song H, Wang ZJ, Gao TJ. Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet. Trans Nonferrous Met Soc China. 2007;17(1):87.

    Article  CAS  Google Scholar 

  29. Xiao B, Yuan Y, Yu SX, Gao YZ. Deformation behavior and crack propagation on interface of Al/Cu laminated composites in uniaxial tensile test. Rare Met. 2020;39(3):296.

    Article  CAS  Google Scholar 

  30. Takebayashi TK, Kunieda T, Yoshinaga N. Comparison of the dislocation density in martensite steels evaluated by some X-ray diffraction methods. ISIJ Int. 2010;50(6):875.

    Article  CAS  Google Scholar 

  31. Wang HM, Peng ZX, Li GR, Li PS. Mechanism of high magnetic field on aluminum matrix composites dislocation density. J Central South Univ (Sci Technol). 2017;48(2):325.

    Google Scholar 

  32. Williamson GK, Smallman RE. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos Mag A. 1956;1(1):34.

    Article  CAS  Google Scholar 

  33. Zlateva G, Martinova Z. Microstructure of Metals and Alloys: An Atlas of Transmission Electron Microscopy. 2nd ed. London: CRC Press; 2008. 34.

    Book  Google Scholar 

  34. Liu LP. Effects of Electric Field on Recovery and Recrystallization Microstructures and Textures of High Purity Aluminum Sheet. Shenyang: Northeastern University; 2007. 7.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51575369 and 51675357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Yang, Y. & Yang, G. Microstructure and properties of YG8 cemented carbide with different pulse currents. Rare Met. 39, 597–606 (2020). https://doi.org/10.1007/s12598-020-01399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01399-0

Keywords

Navigation