Skip to main content
Log in

Green Synthesis of Fe2O3 Nanoparticles from Orange Peel Extract and a Study of Its Antibacterial Activity

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

An eco-friendly and economical, green synthesis method has been employed for the synthesis of iron-oxide (Fe2O3) nanoparticles by using orange peel extract as a stabilizing agent. The thermody-namic properties were evaluated using thermogravimetric analysis-diffraction scanning calorimetry (TGA-DSC), the formation of Fe2O3 nanoparticles was confirmed using fourier transform infra-red spectroscopy (FTIR), X-Ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) spectroscopy. The hydrodynamic diameter was observed using a dynamic laser scattering-particle size analyser (DLS-PSA). The green synthesized nanoparticles were used to evaluate their antibacterial activity via the agar well diffusion method against gram positive (Bacillus subtilis, Staphylococcus aureusb) and gram negative (Escherichia coli., Pseudomonas aeruginosa) bacteria while keeping benzalkonium chloride, chlorhexidine, hexachlorophene and phenol as controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Laurent et al., Chem. Rev. 108, 2064 (2008).

    Article  Google Scholar 

  2. V. M. Vicky, S. Rodney, S. Ajay and R. M. Hardik, J. Pharm. Bioallied Sci. 2, 282 (2010).

    Article  Google Scholar 

  3. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005).

    Article  Google Scholar 

  4. M. Mahmoudi et al., Adv. Drug Deliv. Rev. 63, 24 (2011).

    Article  Google Scholar 

  5. A. K. Gupta, R. R. Naregalkar, V. D. Vaidya and M. Gupta, Nanomedicine (Lond.) 2, 23 (2007).

    Article  Google Scholar 

  6. A. Figuerola, R. di Corato, L. Manna and T. Pellegrino, Pharmacol. Res. 62, 126 (2010).

    Article  Google Scholar 

  7. S. Iravani, Green Chem. 13, 2638 (2011).

    Article  Google Scholar 

  8. R. K. Pandey et al., Int. J. Curr. Res. Acad. Rev. 4, 45 (2016).

    Article  Google Scholar 

  9. V. V. Makarov et al., Langmuir 30, 5982 (2014).

    Article  Google Scholar 

  10. S. Srivastava, Int. J. Phys. Soc. Sci. 2, 161 (2012).

    Google Scholar 

  11. D. A. Demirezen, Y. S. Yıldız, S. Yılmaz and D. D. Yılmaz, J. Biosci. Bioeng. 127, 241 (2019).

    Article  Google Scholar 

  12. I. A. Radini, N. Hasan, M. A. Malik and Z. Khan, J. Photochem. Photobiol. 183, 154 (2018).

    Article  Google Scholar 

  13. M. Balamurugan, S. Saravanan and T. Soga, e-J. Surf. Sci. Nanotechnol. 12, 363 (2014).

    Article  Google Scholar 

  14. S. Perveen and M. A. Farrukh, J. Mater. Sci.: Mater. Electron. 28, 10806 (2017).

    Google Scholar 

  15. S. Thakur and N. Karak, Mater. Chem. Phys. 144, 425 (2014).

    Article  Google Scholar 

  16. M. K. Bahng, C. Mukarakate, D. J. Robichaud and M. R. Nimlos, Anal. Chim. Acta 651, 117 (2009).

    Article  Google Scholar 

  17. V. Mamleev, S. Bourbigot, M. L. Bras and J. Lefebvre, J. Therm. Anal. Calorim. 78, 1009 (2004).

    Article  Google Scholar 

  18. Z. Baniamerian, R. Mehdipour and S. M. S. Murshed, J. Therm. Anal. Calorim. 138, 645 (2019).

    Article  Google Scholar 

  19. Y. Tian and J. Wu, Langmuir 33, 996 (2017).

    Article  Google Scholar 

  20. H. Gasmalla et al., J. Biomater. Nanobiotechnol. 7, 154 (2016).

    Article  Google Scholar 

  21. M. Iacob et al., Beilstein J. Nanotechnol. 7, 2074 (2016).

    Article  Google Scholar 

  22. M. A. Ditta, M. A. Farrukh, S. Ali and N. Younas, Russ. J. Appl. Chem. 90, 151 (2017).

    Article  Google Scholar 

  23. E. Malka et al., Small 9, 4069 (2013).

    Article  Google Scholar 

  24. Y. Li, W. Zhang, J. Niu and Y. Chen, ACS Nano 6, 5164 (2012).

    Article  Google Scholar 

  25. U. Bjoerksten, J. Moser and M. Graetzel, Chem. Mater. 6, 858 (1994).

    Article  Google Scholar 

  26. N. Tran et al., Int. J. Nanomed. 5, 277 (2010).

    Google Scholar 

  27. S. Arokiyaraj et al., Mater. Res. Bull. 48, 3323 (2013).

    Article  Google Scholar 

  28. T. Naseem and M. A. Farrukh, J. Chem. 2015, 7 (2015).

    Article  Google Scholar 

  29. M. Ellouz et al., Chem. Cent. J. 12, 123 (2018).

    Article  Google Scholar 

  30. M. Hyldgaard et al., Appl. Environ. Microbiol. 80, 7758 (2014).

    Article  Google Scholar 

  31. H. A. Foster, I. B. Ditta, S. Varghese and A. Steele, Appl. Microbiol. Biotechnol. 90, 1847 (2011).

    Article  Google Scholar 

  32. W. Y. Pan et al., Nanomedicine 12, 431 (2016).

    Article  Google Scholar 

  33. A. A. Dayem et al., Int. J. Mol. Sci. 18, 120 (2017).

    Article  Google Scholar 

  34. M. Arakha et al., Sci. Rep. 5, 14813 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by Government College University Lahore through Office of Research Innovation and Commercialization (ORIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaista Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M., Ali, S. & Farrukh, M.A. Green Synthesis of Fe2O3 Nanoparticles from Orange Peel Extract and a Study of Its Antibacterial Activity. J. Korean Phys. Soc. 76, 848–854 (2020). https://doi.org/10.3938/jkps.76.848

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.848

Keywords

Navigation