Skip to main content
Log in

Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In vitro bioactivity, biodegradation, and biocompatibility behavior of a new bioactive glass systems were investigated with the incorporation of selenium oxide, for the replacement of sodium oxide in the traditional 45S5 bioglass composition. The apatite-forming ability of melt-derived bioactive glasses was evaluated by immersion studies in simulated body fluid while monitoring the concentration of silicon, calcium, phosphorus, sodium, and selenium in the medium. The weight loss of bioactive glasses and pH change in the tris-(hydroxymethyl)-amino methane buffer solution was determined to observe the biodegradation behavior of glass samples. The glasses were characterized by a Fourier transform infrared spectroscopy, scanning electron microscopy, inductively coupled plasma, and Vickers hardness measurements. The biocompatibility evaluation of the glasses was determined through in vitro osteogenesis assays by cell viability, alkaline phosphatase activity, and mineralized matrix formation. The incorporation of selenium enhanced the hydroxyapatite formation on the bioactive glass surface and microhardness of glasses. The hardness of glasses was found to decrease with immersion duration. The results indicate that selenium incorporated bioactive glasses can be used as bioactive material in bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gatti, A.M., Valdre, G., Tombesi, A.J.: Importance of microanalysis in understanding mechanism of transformation in active glassy biomaterials. J. Biomed. Mater. Res. 31, 475 (1996)

    CAS  Google Scholar 

  2. Jallot, E., Benhayoune, H., Kilian, L., Irigaray, J.L., Oudadesse, H., Balossier, G., Bonhomme, P.: STEM and EDXS characterization of physicochemical reactions at the interface between a bioglass coating and bone. Surf. Interface Anal. 29, 314–320 (2000)

    CAS  Google Scholar 

  3. Qiu, Q.Q., Ducheyne, P., Ayyaswamy, P.S.: New bioactive, degradable composite microspheres as tissue engineering substrates. J. Biomed. Mater. Res. 52, 66–76 (2000)

    CAS  Google Scholar 

  4. Hench, L.L., Splinter, R.J., Greenlee, T.K., et al.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)

    Google Scholar 

  5. Kitsugi, T., Nakamura, T., Oka, M., Senaha, Y., Goto, T., Shibuya, T.: Bone-bonding behavior of plasma-sprayed coatings of bioglass, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J. Biomed. Mater. Res. 30, 261–269 (1996)

    CAS  Google Scholar 

  6. Hench, L.L., Thompson, I.: Twenty-first century challenges for biomaterials. J. R. Soc. Interface. 7, 379–391 (2010)

    Google Scholar 

  7. Hench, L.L., West, J.K.: Biological applications of bioactive glasses. Life Chem. Rep. 13, 187–241 (1996)

    CAS  Google Scholar 

  8. Melchers, S., Uesbeck, T., Winter, O., Eckert, H., Eder, D.: Effect of aluminum ion incorporation on the bioactivity and structure in mesoporous bioactive glasses. Chem. Mater. 28, 3254–3264 (2016)

    CAS  Google Scholar 

  9. Yang, X., Zhang, L., Chen, X., Sun, X., Yang, G., Guo, X.H., Yang, H., Gao, C., Gou, Z.: Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J. Non-Cryst. Solids. 358, 1171–1179 (2012)

    CAS  Google Scholar 

  10. Wu, C.T., Zhou, Y.H., Xu, M.C., Han, P., Chen, L., Chang, J., Xiao, Y.: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomater. 34, 422–433 (2013)

    CAS  Google Scholar 

  11. Goel, A., Rajagopal, R.R., Ferreira, J.M.F.: Influence of strontium on structure, sintering and biodegradation behavior of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. ActaBiomater. 7, 4071–4080 (2011)

    CAS  Google Scholar 

  12. Lao, J., Jallot, E., Nedelec, J.M.: Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for Antiosteoporotic applications? Chem. Mater. 20, 4969–4973 (2008)

    CAS  Google Scholar 

  13. Wang, X., Zhang, Y., Ma, Y., Chen, D., Yang, H., Li, M.: Selenium – containing mesoporous bioactive glass particles: physicochemical and drug delivery properties. Ceram. Int. 42, 3609–3617 (2016)

    CAS  Google Scholar 

  14. Rodríguez-Valencia, C., López-Álvarez, M., Cochón-Cores, B., Pereiro, I., Serra, J., González, P.: Novel selenium-doped hydroxyapatite coatings for biomedical applications. J. Biomed. Mater. Res. A. 101A, 853–861 (2013)

    Google Scholar 

  15. Li, Y.H., Li, X.L., Wong, Y.S., Chen, T., Zhang, H., Liu, C., Zheng, W.: The reversal of cisplatin-induced neph¬rotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomater. 32, 9068–9076 (2011)

    CAS  Google Scholar 

  16. Tran, P.A., Sarin, L., Hurt, R.H., Webster, T.J.: Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J. Biomed. Mater. Res. A. 93(4), 1417–1428 (2010). https://doi.org/10.1002/jbm.a.32631.

  17. Torres, S.K., Campos, V.L., León, C.G., Rodríguez-Llamazares, S.M., Rojas, S.M., González, M., Smith, C., Mondaca, M.A.: Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res. 14, 1–9 (2012)

    Google Scholar 

  18. Ma, J., Wang, Y.H., Zhou, L., Zhang, S.: Preparation and characterization of selenite substituted hydroxyapatite. Mater. Sci. Eng. C. 33, 440–445 (2013)

    CAS  Google Scholar 

  19. Tran, P., Webster, T.J.: Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int. J. Nanomedicine. 3, 391–396 (2008)

    CAS  Google Scholar 

  20. Kokubo, T.: Advanced series in ceramics. In: Hench, L.L., Wilson, J. (eds.) An Introduction to Bioceramics, vol. 1, pp. 75–88. World Sci, Singapore (1993)

    Google Scholar 

  21. Taş, A.C.: Synthesis of biomimetic ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomater. 211, 429–1438 (2000)

    Google Scholar 

  22. Yücel, S., Terzioglu, P., Aydın-Sinirlioğlu, Z., Tekerek, B.S., Basaran-Elalmıs, Y.: Synthesis, characterization, in vitro degradability and bioactivity of strontium substituted Rice Hull ash silica based melt derived 45S5 bioactive glass. Sigma J Eng. Natur. Sci. 33, 23–32 (2015)

    Google Scholar 

  23. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2006)

    CAS  Google Scholar 

  24. Guerrero-Lecuona, M.C., Canillas, M., Pena, P., Rodríguez, M.A., De Aza, D.H.: Different in vitro behavior of two Ca3(PO4)2 based biomaterials, a glass-ceramic and a ceramic, having the same chemical composition. Bol. Soc. Esp. Ceram. V. 54, 181–188 (2015)

    Google Scholar 

  25. Arepalli, S.K., Tripathi, H., Hira, S.K., Manna, P.P., Pyare, R., Singh, S.P.: Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater. Sci. Eng. C. 69, 108–116 (2016)

    CAS  Google Scholar 

  26. Özarslan, A.C., Yücel, S.: Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. Mater. Sci. Eng. C. 68, 350–357 (2016)

    Google Scholar 

  27. Yucel, S., Özçimen, D., Terzioğlu, P., Acar, S., Yaman, C.: Preparation of melt derived 45S5 bioactive Glass from Rice Hull ash and its characterization. Adv. Sci. Lett. 19, 3477–3481 (2013)

    CAS  Google Scholar 

  28. Souza, M.T., Crovace, M.C., Schröder, C., Eckert, H., Peitl, O., Zanotto, E.D.: Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in bioglass-derived glasses. J. Non-Cryst. Solids. 382, 57–65 (2013)

    CAS  Google Scholar 

  29. Gu, Y.W., Khor, K.A., Cheang, P.: In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomater. 24, 1603–1611 (2003)

    CAS  Google Scholar 

  30. Kokubo, T., Ito, S., Shigematsu, M., Sanka, S., Yamamuro, T.: Fatigue and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite. J. Mater. Sci. 22, 4067–4070 (1987)

    CAS  Google Scholar 

  31. Bohner, M., Lemaitre, J.: Can bioactivity be tested in vitro with SBF solution? Biomater. 30, 2175–2179 (2009)

    CAS  Google Scholar 

  32. Yan, H., Zhang, K., Blanford, C.F., Francis, L.F., Stein, A.: In vitro Hydroxycarbonate apatite mineralization of CaO−SiO2 sol−gel glasses with a three-dimensionally ordered macroporous structure. Chem. Mater. 13, 1374–1382 (2001)

    CAS  Google Scholar 

  33. Mansur, H.S., Costa, H.S.: Nanostructed poly(vinyl alcohol)/ bioactive glass and poly (vinyl alcohol)/chitosan/ bioactive glass hybrid scaffolds for biomedical applications. Chem. Eng. J. 137, 72–83 (2008)

    CAS  Google Scholar 

  34. Hesaraki, S., Alizadeh, M., Nazarian, H., Sharifi, D.: Physicochemical and in vitro biological evaluation of strontium/ calcium Silicophosphate glass. J. Mater. Sci. Mater. Med. 21, 695–705 (2010)

    CAS  Google Scholar 

  35. Rezaei, Y., Moztarzadeh, F., Shahabi, S., Tahriri, M.: Synthesis, characterization, and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO-SrO bioactive glass. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 44, 692–701 (2014)

    CAS  Google Scholar 

  36. Varila, L., Fagerlund, S., Lehtonen, T., Tuominen, J., Hupa, L.: Surface reactions of bioactive glasses in buffered solutions. J. Eur. Ceram. Soc. 32, 2757–2763 (2012)

    CAS  Google Scholar 

  37. Cerrutia, M.G., Greenspan, D., Powers, K.: An analytical model for the dissolution of different particle size samples of bioglass in TRIS-buffered solution. Biomater. 26, 4903–4911 (2005)

    Google Scholar 

  38. Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M., Karimi, M.: Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater. Sci. Eng. C. 29, 335–340 (2009)

    CAS  Google Scholar 

  39. Nayak, J.P., Kumar, S., Bera, J.: Sol–gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization. J. Non-Cryst. Solids. 356, 1447–1451 (2010)

    CAS  Google Scholar 

  40. Posti, J.P., Piitulainen, J.M., Hupa, L., Fagerlund, S., Frantzén, J., Aitasalo, K.M.J., Vuorinen, V., Serlo, W., Syrjänen, S., Vallittu, P.K.: A glass fiber-reinforced composite- bioactive glass cranioplasty implant: a case study of an early development stage implant removed due to a late infection. J. Mech. Behav. Biomed. Mater. 55, 191–200 (2015)

    Google Scholar 

  41. Siqueira, R.L., Peitl, O., Zanotto, E.: Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater. Sci. Eng. 31, 983–991 (2011)

    CAS  Google Scholar 

  42. Essien, E.R., Adams, L.A., Shaibu, R.O., Olasupo, I.A., Oki, A.: Economic route to sodium-containing silicate bioactive glass scaffold. Open J Regen. Med. 1, 33–40 (2012)

    Google Scholar 

  43. Cannillo, V., Chiellini, F., Fabbri, P., Sola, A.: Production of bioglass® 45S5 Polycaprolactone composite scaffolds via salt-leaching. Compos. Struct. 92, 1823–1832 (2010)

    Google Scholar 

  44. Wan, Y., Cui, T., Li, W., Li, C., Xiao, J., Zhu, Y., Ji, D., Xiong, G., Luo, H.: Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Mater. Des. 99, 521–527 (2016)

    CAS  Google Scholar 

Download references

Funding

The TUBITAK (The Scientific and Technological Research Council of Turkey) provided financial support through a 3001 project (Project No: 21M647).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pınar Terzioğlu or Sevil Yücel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakuzu-İkizler, B., Terzioğlu, P., Oduncu-Tekerek, B.S. et al. Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass. J Aust Ceram Soc 56, 697–709 (2020). https://doi.org/10.1007/s41779-019-00388-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00388-6

Keywords

Navigation