Skip to main content
Log in

Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Optical imaging and phototherapy in the second near-infrared window (NIR-II, 900–1700 nm) can reduce tissue auto-fluorescence and photon scattering, which facilitates higher spatial resolution and deeper tissue penetration depth for solid tumor theranostics. Herein, a polycyclic naphthalenediimide (NDI) based chromophore 13-amino-4,5-dibromo-2,7- di(dodecan-6-yl)-1H-isoquinolino[4,5,6-fgh]naphtho[1,8-bc][1,9]phenanthroline-1,3,6,8(2H,7H,9H)-tetraone (NDI-NA) was designed and synthesized. With large polycyclic π-systems, NDI-NA molecule possesses broad near-infrared (NIR) absorption (maximum at 777 nm) and emission (maximum at 921 nm). By nanoprecipitation, NDI-NA nanoparticles (NPs) were formed in aqueous solution with J-aggregative state, which showed huge red-shift in both absorption spectrum (maximum at 904 nm) and emission spectrum (maximum at 1,020 nm), endowing NDI-NA NPs efficient NIR-II fluorescence imaging capability. Besides, the NPs present effective tumor-targeting capability in vivo based on the enhanced permeation and retention (EPR) effect. More importantly, NDI-NA NPs simultaneously have high photothermal conversion efficiency (30.8%) and efficient reactive oxygen species generation ability, making them remarkably phototoxic to cancer cells. The polycyclic chromophore based multifunctional NDI-NA NPs as NIR-II phototheranostic agents possess bright future for clinical NIR-II imaging-guided cancer phototherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng HS, Chiu DT. Chem Soc Rev, 2015, 44: 4699–4722

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu C, Liu L, Yang Q, Lv F, Wang S. Chem Rev, 2012, 112: 4687–4735

    CAS  PubMed  Google Scholar 

  3. H. S, Song J, Qu J, Cheng Z. Chem Soc Rev, 2018, 47: 4258–4278

    Google Scholar 

  4. Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Chem Soc Rev, 2019, 48: 22–37

    CAS  PubMed  Google Scholar 

  5. Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Adv Mater, 2019, 31: 1904914

    CAS  Google Scholar 

  6. Liu Y, Meng X, Bu W. Coord Chem Rev, 2019, 379: 82–98

    CAS  Google Scholar 

  7. Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. Adv Mater, 2018, 30: 1706090

    Google Scholar 

  8. Liu Y, Bhattarai P, Dai Z, Chen X. Chem Soc Rev, 2019, 48: 2053- 2108

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hang Y, Cai X, Wang J, Jiang T, Hua J, Liu B. Sci China Chem, 2018, 61: 898–908

    CAS  Google Scholar 

  10. Cai Y, Liang P, Tang Q, Yang X, Si W, Huang W, Zhang Q, Dong X. ACS Nano, 2017, 11: 1054–1063

    CAS  PubMed  Google Scholar 

  11. Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Small, 2018, 14: 1704247

    Google Scholar 

  12. Jia Y, Wang X, Hu D, Wang P, Liu Q, Zhang X, Jiang J, Liu X, Sheng Z, Liu B, Zheng H. ACS Nano, 2019, 13: 386–398

    CAS  PubMed  Google Scholar 

  13. Yang Z, Fan W, Tang W, Shen Z, Dai Y, Song J, Wang Z, Liu Y, Lin L, Shan L, Liu Y, Jacobson O, Rong P, Wang W, Chen X. Angew Chem Int Ed, 2018, 57: 14101–14105

    CAS  Google Scholar 

  14. Vankayala R, Hwang KC. Adv Mater, 2018, 30: 1706320

    Google Scholar 

  15. G. X, Zhang X, Ma H, Jia S, Zhang P, Zhao Y, Liu Q, Wang J, Zheng X, Lam JWY, Ding D, Tang BZ. Adv Mater, 2018, 30: 1801065

    Google Scholar 

  16. Chen C, Ou H, Liu R, Ding D. Adv Mater, 2020, 32: 1806331

    CAS  Google Scholar 

  17. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H. Nat Mater, 2016, 15: 235–242

    CAS  PubMed  Google Scholar 

  18. Tang Y, Shao A, Cao J, Li H, Li Q, Zeng M, Liu M, Cheng Y, Zhu W. Sci China Chem, 2018, 61: 184–191

    CAS  Google Scholar 

  19. Y. Z, Shi J, Li J, Li P, Zhang H. J Mater Chem B, 2018, 6: 1238–1243

    Google Scholar 

  20. Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Nat Med, 2012, 18: 1841–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zebibula A, Alifu N, Xia L, Sun C, Yu X, Xue D, Liu L, Li G, Qian J. Adv Funct Mater, 2018, 28: 1703451

    Google Scholar 

  22. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. Angew Chem Int Ed, 2012, 51: 9818–9821

    CAS  Google Scholar 

  23. Gunnlaugsson T. Sci China Chem, 2018, 61: 1347–1348

    CAS  Google Scholar 

  24. H. H, Lin Y, Tian ZQ, Zhu DL, Zhang ZL, Pang DW. Small, 2018, 14: 1703296

    Google Scholar 

  25. L. T, Li C, Ruan Z, Xu P, Yang X, Yuan P, Wang Q, Yan L. ACS Nano, 2019, 13: 3691–3702

    Google Scholar 

  26. Jiang Y, Li J, Zhen X, Xie C, Pu K. Adv Mater, 2018, 30: 1705980

    Google Scholar 

  27. Cao Z, Feng L, Zhang G, Wang J, Shen S, Li D, Yang X. Biomaterials, 2018, 155: 103–111

    CAS  PubMed  Google Scholar 

  28. Guo B, Sheng Z, Kenry K, Hu D, Lin X, Xu S, Liu C, Zheng H, Liu B. Mater Horiz, 2017, 4: 1151–1156

    CAS  Google Scholar 

  29. Shou K, Tang Y, Chen H, Chen S, Zhang L, Zhang A, Fan Q, Yu A, Cheng Z. Chem Sci, 2018, 9: 3105–3110

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou B, Hu Z, Jiang Y, Zhong C, Sun Z, Sun H. Phys Chem Chem Phys, 2018, 20: 19759–19767

    CAS  PubMed  Google Scholar 

  31. Yang Q, Hu Z, Zhu S, Ma R, Ma H, Ma Z, Wan H, Zhu T, Jiang Z, Liu W, Jiao L, Sun H, Liang Y, Dai H. J Am Chem Soc, 2018, 140: 1715- 1724

    CAS  PubMed  Google Scholar 

  32. Sun Y, Zeng X, Xiao Y, Liu C, Zhu H, Zhou H, Chen Z, Xu F, Wang J, Zhu M, Wu J, Tian M, Zhang H, Deng Z, Cheng Z, Hong X. Chem Sci, 2018, 9: 2092–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  33. N. X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Nano Lett, 2019, 19: 318–330

    Google Scholar 

  34. L. B, Lu L, Zhao M, Lei Z, Zhang F. Angew Chem Int Ed, 2018, 57: 7483–7487

    Google Scholar 

  35. Shao W, Chen G, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN. J Am Chem Soc, 2016, 138: 16192–16195

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang W, Ma Z, Zhu S, Wan H, Yue J, Ma H, Ma R, Yang Q, Wang Z, Li Q, Qian Y, Yue C, Wang Y, Fan L, Zhong Y, Zhou Y, Gao H, Ruan J, Hu Z, Liang Y, Dai H. Adv Mater, 2018, 30: 1800106

    Google Scholar 

  37. Yang Q, Ma Z, Wang H, Zhou B, Zhu S, Zhong Y, Wang J, Wan H, Antaris A, Ma R, Zhang X, Yang J, Zhang X, Sun H, Liu W, Liang Y, Dai H. Adv Mater, 2017, 29: 1605497

    Google Scholar 

  38. Zhu S, Herraiz S, Yue J, Zhang M, Wan H, Yang Q, Ma Z, Wang Y, He J, Antaris AL, Zhong Y, Diao S, Feng Y, Zhou Y, Yu K, Hong G, Liang Y, Hsueh AJ, Dai H. Adv Mater, 2018, 30: 1705799

    Google Scholar 

  39. Antaris AL, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, Wang J, Lozano AX, Fan Q, Chew L, Zhu M, Cheng K, Hong X, Dai H, Cheng Z. Nat Commun, 2017, 8: 15269

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo Z, Ma Y, Liu Y, Yan C, Shi P, Tian H, Zhu WH. Sci China Chem, 2018, 61: 1293–1300

    CAS  Google Scholar 

  41. Huang R, Phan H, Herng TS, Hu P, Zeng W, Dong SQ, Das S, Shen Y, Ding J, Casanova D, Wu J. J Am Chem Soc, 2016, 138: 10323- 10330

    CAS  PubMed  Google Scholar 

  42. Wang S, Wu W, Manghnani P, Xu S, Wang Y, Goh CC, Ng LG, Liu B. ACS Nano, 2019, 13: 3095–3105

    CAS  PubMed  Google Scholar 

  43. N. KK, Zheng G. Chem Rev, 2015, 115: 11012–11042

    Google Scholar 

  44. Wang S, Gu K, Guo Z, Yan C, Yang T, Chen Z, Tian H, Zhu WH. Adv Mater, 2019, 31: 1805735

    Google Scholar 

  45. Wang Y, Wang Z, Xu C, Tian H, Chen X. Biomaterials, 2019, 197: 284–293

    CAS  PubMed  Google Scholar 

  46. Gao X, Qiu W, Yang X, Liu Y, Wang Y, Zhang H, Qi T, Liu Y, Lu K, Du C, Shuai Z, Yu G, Zhu D. Org Lett, 2007, 9: 3917–3920

    CAS  PubMed  Google Scholar 

  47. Sarikaya SYıı, Yeşilot S, Kılıç A, Okutan E. Dyes Pigments, 2019, 162: 734–740

    CAS  Google Scholar 

  48. Yang ZL, Tian W, Wang Q, Zhao Y, Zhang YL, Tian Y, Tang YX, Wang SJ, Liu Y, Ni QQ, Lu GM, Teng ZG, Zhang LJ. Adv Sci, 2018, 5: 1700847

    Google Scholar 

  49. Wei Z, Liang P, Xie J, Song C, Tang C, Wang Y, Yin X, Cai Y, Han W, Dong X. Chem Sci, 2019, 10: 2778–2784

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwong JQ, Molkentin JD. Cell Metab, 2015, 21: 206–214

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by Jiangsu Provincial Key Research and Development Plan (BE2017741), Natural Science Foundation of Jiangsu Province (BK20180136, BK20160051), Jiangsu Provincial Medical Youth Talent (QNRC 2016121), and Nanjing Foundation for Development of Science and Technology (2017sc512031, 201605042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cai, Xiaochen Dong or Wei Han.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Song, C., Wei, Z. et al. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci. China Chem. 63, 946–956 (2020). https://doi.org/10.1007/s11426-020-9723-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9723-9

Keywords

Navigation