Skip to main content
Log in

Controlling quantum coherence of a two-component Bose–Einstein condensate via an impurity atom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to control quantum coherence of a two-component Bose–Einstein condensate (BEC) by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single-atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that the SAV can realize the on-demand control over quantum coherence at an arbitrary time. Specially, it is found that the SAV can also control higher-order quantum coherence of two-component BEC. We investigate the long-time evolution of quantum coherence of the two-component BEC and find that collapse–revival patterns of quantum coherence can be manipulated by the initial-state parameters of the impurity atom and the impurity–BEC interaction strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017)

    ADS  MathSciNet  Google Scholar 

  2. Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  4. Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    ADS  Google Scholar 

  5. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. A 439, 553 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. (Amsterdam, Neth.) 247, 135 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    ADS  Google Scholar 

  9. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  10. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    ADS  Google Scholar 

  11. Farace, A., De Pasquale, A., Rigovacca, L., Giovannetti, V.: Discriminating strength: a bona fide measure of nonclassical correlations. New J. Phys. 16, 073010 (2014)

    ADS  Google Scholar 

  12. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    ADS  Google Scholar 

  13. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    ADS  Google Scholar 

  14. Çakmak, B., Karpat, G., Fanchini, F.F.: Factorization and criticality in the anisotropic XY chain via correlations. Entropy 17, 790 (2015)

    ADS  Google Scholar 

  15. Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    ADS  Google Scholar 

  16. Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, N.Y.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. J. Phys. A Math. Theor. 49, 143001 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Janzing, D., Wocjan, P., Zeier, R., Geiss, R., Beth, T.: Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39, 2717 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Myatt, C.J., Burt, E.A., Ghrist, R.W., Cornell, E.A., Wieman, C.E.: Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586 (1997)

    ADS  Google Scholar 

  20. Matthews, M.R., Hall, D.S., Jin, D.S., Ensher, J.R., Wieman, C.E., Cornell, E.A., Dalfovo, F., Minniti, C., Stringari, S.: Dynamical response of a Bose–Einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett. 81, 243 (1998)

    ADS  Google Scholar 

  21. Hall, D.S., Matthews, M.R., Ensher, J.R., Wieman, C.E., Cornell, E.A.: Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys. Rev. Lett. 81, 1539 (1998)

    ADS  Google Scholar 

  22. Hall, D.S., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Measurements of relative phase in two-component Bose–Einstein condensates. Phys. Rev. Lett. 81, 1543 (1998)

    ADS  Google Scholar 

  23. Lewandowski, H.J., Harber, D.M., Whitaker, D.L., Cornell, E.A.: Observation of anomalous spin-state segregation in a trapped ultracold vapor. Phys. Rev. Lett. 88, 070403 (2002)

    ADS  Google Scholar 

  24. Erhard, M., Schmaljohann, H., Kronjäger, J., Bongs, K., Sengstock, K.: Measurement of a mixed-spin-channel Feshbach resonance in \(^{87}\)Rb. Phys. Rev. A 69, 032705 (2004)

    ADS  Google Scholar 

  25. Zibold, T., Nicklas, E., Gross, C., Oberthaler, M.K.: Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010)

    ADS  Google Scholar 

  26. Ho, T.L., Shenoy, V.B.: Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276 (1996)

    ADS  Google Scholar 

  27. Pu, H., Bigelow, N.P.: Properties of two-species Bose condensates. Phys. Rev. Lett. 80, 1130 (1998)

    ADS  Google Scholar 

  28. Ao, P., Chui, S.T.: Binary Bose–Einstein condensate mixtures in weakly and strongly segregated phases. Phys. Rev. A 58, 4836 (1998)

    ADS  Google Scholar 

  29. Cazalilla, M.A., Ho, A.F.: Instabilities in binary mixtures of one-dimensional quantum degenerate gases. Phys. Rev. Lett. 91, 150403 (2003)

    ADS  Google Scholar 

  30. Zhou, L., Qian, J., Pu, H., Zhang, W.P., Ling, H.Y.: Phase separation in a two-species atomic Bose–Einstein condensate with an interspecies Feshbach resonance. Phys. Rev. A 78, 053612 (2008)

    ADS  Google Scholar 

  31. Ivanov, S.K., Kamchatnov, A.M.: Simple waves in a two-component Bose–Einstein condensate. Phys. Rev. E 97, 042208 (2018)

    ADS  Google Scholar 

  32. Tamilthiruvalluvar, R., Wamba, E., Subramaniyan, S., Porsezian, K.: Impact of higher-order nonlinearity on modulational instability in two-component Bose–Einstein condensates. Phys. Rev. E 99, 032202 (2019)

    ADS  Google Scholar 

  33. Williams, J., Walser, R., Cooper, J., Cornell, E., Holland, M.: Nonlinear Josephson-type oscillations of a driven, two-component Bose–Einstein condensate. Phys. Rev. A 59, R31 (1999)

    ADS  Google Scholar 

  34. Chen, Z.D., Liang, J.Q., Shen, S.Q., Xie, W.F.: Dynamics and Berry phase of two-species Bose–Einstein condensates. Phys. Rev. A 69, 023611 (2004)

    ADS  Google Scholar 

  35. Riedel, M.F., Böhi, P., Li, Y., Hänsch, T.W., Sinatra, A.: Atom-chip-based generation of entanglement for quantum metrology. Nature (London) 464, 1170 (2010)

    ADS  Google Scholar 

  36. Gross, C., Zibold, T., Nicklas, E., Estève, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature (Lond.) 464, 1165 (2010)

    ADS  Google Scholar 

  37. Fadel, M., Zibold, T., Décamps, B., Treutlein, P.: Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science 360, 409 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Rosales-Zárate, L., Dalton, B.J., Reid, M.D.: Einstein–Podolsky–Rosen steering, depth of steering, and planar spin squeezing in two-mode Bose–Einstein condensates. Phys. Rev. A 98, 022120 (2018)

    ADS  Google Scholar 

  39. Ng, H.T., Bose, S.: Single-atom-aided probe of the decoherence of a Bose–Einstein condensate. Phys. Rev. A 78, 023610 (2008)

    ADS  Google Scholar 

  40. Balewski, J.B., Krupp, A.T., Gaj, A., Peter, D., Büchler, H.P., Löw, R., Hofferberth, S., Pfau, T.: Coupling a single electrontoa Bose–Einstein condensate. Nature (Lond.) 502, 664 (2013)

    ADS  Google Scholar 

  41. Wang, J., Gacesa, M., Côté, R.: Rydberg electrons in a Bose–Einstein Condensate. Phys. Rev. Lett. 114, 243003 (2015)

    ADS  Google Scholar 

  42. Schmidt, R., Sadeghpour, H.R., Demler, E.: Mesoscopic Rydberg impurity in an atomic quantum gas. Phys. Rev. Lett. 116, 105302 (2016)

    ADS  Google Scholar 

  43. Heidemann, R., Raitzsch, U., Bendkowsky, V., Butscher, B., Löw, R., Pfau, T.: Rydberg excitation of Bose–Einstein condensates. Phys. Rev. Lett. 100, 033601 (2008)

    ADS  Google Scholar 

  44. Mukherjee, R., Ates, C., Li, W., Wüster, S.: Phase-imprinting of Bose–Einstein condensates with Rydberg impurities. Phys. Rev. Lett. 115, 040401 (2015)

    ADS  Google Scholar 

  45. Johnson, T.H., Yuan, Y., Bao, W., Clark, S.R., Foot, C., Jaksch, D.: Hubbard model for atomic impurities bound by the vortex lattice of a rotating Bose–Einstein condensate. Phys. Rev. Lett. 116, 240402 (2016)

    ADS  Google Scholar 

  46. Yuan, J.B., Lu, W.J., Song, Y.J., Kuang, L.M.: Single-impurity-induced Dicke quantum phase transition in a cavity-Bose–Einstein condensate. Sci. Rep. 7, 7404 (2017)

    ADS  Google Scholar 

  47. Song, Y.J., Kuang, L.M.: Controlling decoherence speed limit of a single impurity atom in a Bose–Einstein-condensate reservoir. Ann. Phys. (Berlin, Ger.) 531, 1800423 (2019)

    ADS  Google Scholar 

  48. Lu, W.J., Li, Z., Kuang, L.M.: Nonlinear Dicke quantum phase transition and its quantum witness in a cavity-Bose–Einstein-condensate system. Chin. Phys. Lett. 35, 116401 (2018)

    ADS  Google Scholar 

  49. Yuan, J.B., Xing, H.J., Kuang, L.M., Yi, S.: Quantum non-Markovian reservoirs of atomic condensates engineered via dipolar interactions. Phys. Rev. A 95, 033610 (2017)

    ADS  Google Scholar 

  50. Yuan, J.B., Kuang, L.M.: Quantum-discord amplification induced by a quantum phase transition via a cavity\(^{.}\) CBose–Einstein-condensate system. Phys. Rev. A 87, 024101 (2013)

    ADS  Google Scholar 

  51. Tan, Q.S., Xie, Q.T., Kuang, L.M.: Effects of dipolar interactions on the sensitivity of nonlinear spinor-BEC interterometry. Sci. Rep. 8, 3218 (2018)

    ADS  Google Scholar 

  52. Tan, Q.S., Yuan, J.B., Jin, G.R., Kuang, L.M.: Near-Heisenberg-limited parameter estimation precision by a dipolar-Bose-gas reservoir engineering. Phys. Rev. A 96, 063614 (2017)

    ADS  Google Scholar 

  53. Ng, H.T., Leung, P.T.: Two-mode entanglement in two-component Bose–Einstein condensates. Phys. Rev. A 71, 013601 (2005)

    ADS  Google Scholar 

  54. Ng, H.T., Burnett, K.: Entanglement between atomic condensates in an optical lattice: effects of interaction range. Phys. Rev. A 75, 023601 (2007)

    ADS  Google Scholar 

  55. Milburn, G.J., Corney, J., Wright, E.M., Walls, D.F.: Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential. Phys. Rev. A 55, 4318 (1997)

    ADS  Google Scholar 

  56. Dunningham, J.A., Collett, M.J., Walls, D.F.: Quantum state of a trapped Bose–Einstein condensate. Phys. Lett. A 245, 49 (1998)

    ADS  Google Scholar 

  57. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)

    ADS  Google Scholar 

  58. Bruderer, M., Jaksch, D.: Probing BEC phase fluctuations with atomic quantum dots. New J. Phys. 8, 87 (2006)

    ADS  Google Scholar 

  59. Inoyue, S., Andrews, M.R., Stenger, J., Miesner, H.-J., tamper-Kurn, D.M., Ketterle, W.: Observation of Feshbach resonances in a Bos\(^{.}\) CEinstein condensate. Nature (Lond.) 392, 151 (1998)

    ADS  Google Scholar 

  60. Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Stable \(^{85}\)Rb Bose–Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795 (2000)

    ADS  Google Scholar 

  61. Marte, A., Volz, T., Schuster, J., Dürr, S., Rempe, G., van Kempen, E.G.M., Verhaar, B.J.: Feshbach resonances in rubidium 87: precision measurement and analysis. Phys. Rev. Lett. 89, 283202 (2002)

    ADS  Google Scholar 

  62. Roati, G., Zaccanti, M., D’Errico, C., Catani, J., Modugno, M., Simoni, A., Inguscio, M., Modugno, G.: \(^{39}\)K Bose–Einstein condensate with tunable interactions. Phys. Rev. Lett. 99, 010403 (2007)

    ADS  Google Scholar 

  63. Titulaer, U.M., Glauber, R.J.: Density operators for coherent fields. Phys. Rev. 145, 1041 (1966)

    ADS  Google Scholar 

  64. Bialynicka-Birula, Z.: Properties of the generalized coherent state. Phys. Rev. 173, 1207 (1968)

    ADS  Google Scholar 

  65. Stoler, D.: Generalized coherent states. Phys. Rev. D 4, 2309 (1971)

    ADS  Google Scholar 

  66. Kuang, L.M., Zhou, L.: Generation of atom–photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency. Phys. Rev. A 68, 043606 (2003)

    ADS  Google Scholar 

  67. Kuang, L.M., Chen, Z.B., Pan, J.W.: Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency. Phys. Rev. A 76, 052324 (2007)

    ADS  Google Scholar 

  68. Huang, Y.X., Tan, Q.S., Fu, L.B., Wang, X.G.: Coherence dynamics of a two-mode Bose–Einstein condensate coupled with the environment. Phys. Rev. A 88, 063642 (2013)

    ADS  Google Scholar 

  69. Opanchuk, B., Rosales-Zárate, L., Teh, R.Y., Reid, M.D.: Quantifying the mesoscopic quantum coherence of approximate NOON states and spin-squeezed two-mode Bose–Einstein condensates. Phys. Rev. A 94, 062125 (2016)

    ADS  Google Scholar 

  70. Greiner, M., Mandel, O., Hänsch, T.W., Bloch, I.: Collapse and revival of the matter wave field of a Bose\(^{.}\) CEinstein condensate. Nature (Lond.) 491, 51 (2002)

    ADS  Google Scholar 

  71. Shore, B.W., Knight, P.L.: The Jaynes–Cummings model. J. Mod. Opt. 40, 1195 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Kuang, L.M., Chen, X., Chen, G.H., Ge, M.M.: Jaynes–Cummings model with phase damping. Phys. Rev. A 56, 3139 (1997)

    ADS  Google Scholar 

  73. Jack, M.W.: Decoherence due to three-body loss and its effect on the state of a Bose–Einstein condensate. Phys. Rev. Lett. 89, 140402 (2002)

    ADS  Google Scholar 

  74. Li, W.D., Zhou, X.J., Wang, Y.Q., Liang, J.Q., Liu, W.M.: Time evolution of the relative phase in two-component Bose–Einstein condensates with a coupling drive. Phys. Rev. A. 64, 015602 (2001)

    ADS  Google Scholar 

  75. Treutlein, P., Steinmetz, T., Colombe, Y., Lev, B., Hommelhoff, P., Reichel, J., Greiner, M., Mandel, O., Widera, A., Rom, T., Bloch, I., Hänsch, T.W.: Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54, 702 (2006)

    Google Scholar 

  76. Kalas, R.M., Blume, D.: Interaction-induced localization of an impurity in a trapped Bose–Einstein condensate. Phys. Rev. A 73, 043608 (2006)

    ADS  Google Scholar 

  77. Korolkova, N., Pe\(\breve{r}\)ina Jr., J.: Quantum statistics and dynamics of Kerr nonlinear couplers. Opt. Commun. 136, 135 (1996)

  78. Kalaga, J.K., Leoński, W., Szczȩśniak, R.: Quantum steering and entanglement in three-mode triangle Bose-Hubbard system. Quantum Inf. Process. 16, 265 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Xu, X.W., Chen, A.X., Liu, Y.X.: Phononic Josephson oscillation and self-trapping with two-phonon exchange interaction. Phys. Rev. A 96, 023832 (2017)

    ADS  Google Scholar 

  80. Lu, T.X., Jiao, Y.F., Zhang, H.L., Saif, F., Jing, H.: Selective and switchable optical amplification with mechanical driven oscillators. Phys. Rev. A 100, 013813 (2019)

    ADS  Google Scholar 

  81. Pe\(\breve{r}\)ina, J., Jr., Luks, A., Kalaga, J. K., Leoński, W., and Miranowicz, A.: Nonclassical light at exceptional points of a quantum PT-symmetric two-mode system. Phys. Rev. A 100, 053820 (2019)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants Nos. 11775075, 1143011, and 11935006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Man Kuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kuang, LM. Controlling quantum coherence of a two-component Bose–Einstein condensate via an impurity atom. Quantum Inf Process 19, 188 (2020). https://doi.org/10.1007/s11128-020-02689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02689-3

Keywords

Navigation