Skip to main content
Log in

The Reducible Disulfide Proteome of Synaptosomes Supports a Role for Reversible Oxidations of Protein Thiols in the Maintenance of Neuronal Redox Homeostasis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The mechanisms by which neurons maintain redox homeostasis, disruption of which is linked to disease, are not well known. Hydrogen peroxide, a major cellular oxidant and neuromodulator, can promote reversible oxidations of protein thiols but the scope, targets, and significance of such oxidations occurring in neurons, especially in vivo, are uncertain. Using redox phenylarsine oxide (PAO)-affinity chromatography, which exploits the high-affinity of trivalent arsenicals for protein dithiols, this study investigated the occurrence of reducible and, therefore, potentially regulatory, protein disulfide bonds in Triton X-100-soluble protein fractions from isolated nerve-endings (synaptosomes) prepared from rat brains. Postmortem oxidations of protein thiols were limited by rapidly freezing the brains following euthanasia and, later, homogenizing them in the presence of the N-ethylmaleimide to trap reduced thiols. The reducible disulfide proteome comprised 5.4% of the total synaptosomal protein applied to the immobilized PAO columns and was overrepresented by pathways underlying ATP synaptic supply and demand including synaptic vesicle trafficking. The alpha subunits of plasma membrane Na+, K+-ATPase and the mitochondrial ATP synthase were particularly abundant proteins of the disulfide proteome and were enriched in this fraction by 3.5- and 6.7-fold, respectively. An adaptation of the commonly used “biotin-switch” method provided additional support for selective oxidation of thiols on the alpha subunit of the ATP synthase. We propose that reversible oxidations of protein thiols may underlie a coordinated metabolic response to hydrogen peroxide, serving to both control redox signaling and protect neurons from oxidant stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Biotin-HPDP:

N-[6-(Biotinamido)hexyl]-3′-(2′-pyridyldithio)-propionamide

CaN:

Calcineurin

DTT:

Dithiothreitol

FT:

Flow-through

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GSH:

Glutathione

KHH:

Krebs–Henseleit–HEPES

LW:

Last wash

LC–MS/MS:

Liquid chromatography-tandem mass spectrometry

NEM:

N-ethylmaleimide

NNT:

Nicotinamide nucleotide transhydrogenase

PAO:

Phenylarsine oxide

PPP:

Pentose phosphate pathway

ROS:

Reactive oxygen species

TCEP:

Tris(2-carboxyethyl)phosphine

Trx:

Thioredoxin

References

  1. Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054. https://doi.org/10.1089/ars.2010.3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hongpaisan J, Winters CA, Andrews SB (2004) Strong calcium entry activates mitochondrial generation, upregulating kinase signaling in hippocampal neurons. J Neurosci 24:10878–10887. https://doi.org/10.1523/JNEUOSCI.3278-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cobley JN (2018) Synapse pruning: Mitochondrial ROS with their hands on the shears. BioEssays 40:e1800031. https://doi.org/10.1002/bies.201800031

    Article  PubMed  Google Scholar 

  4. Foley TD (2019) Reductive reprogramming: A not-so-radical hypothesis of neuro-degeneration linking redox perturbations to neuroinflammation and excitotoxicity. Cell Mol Neurobiol 39:577–590. https://doi.org/10.1007/s10571-019-00672-w

    Article  CAS  PubMed  Google Scholar 

  5. Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikinomidou C, Hardingham GE (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487. https://doi.org/10.1038/nn2071

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baxter PS, Bell KF, Hasel P, Kaindl AM, Fricker M, Thomson D, Cregan SP, Gillingwater TH, Hardingham GE (2015) Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun 6:6761. https://doi.org/10.1038/ncomms7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J (2017) Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system 27:989–1010. https://doi.org/10.1089/ars.2016.6925

    Article  CAS  Google Scholar 

  8. Rasler M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10. https://doi.org/10.1186/jbiol61

    Article  Google Scholar 

  9. Peralta D, Bronowska AK, Morgan B, Doka E, Van Laer K, Grater F, Dick TP (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat Chem Biol 11:156–163. https://doi.org/10.1038/nchembio.1720

    Article  CAS  PubMed  Google Scholar 

  10. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  11. Randall LM, Ferrer-Sueta G, Denicola A (2013) Peroxiredoxins as preferential targets in H2O2-induced signaling. Methods Enzymol. 527:41–63. https://doi.org/10.1016/B978-0-12-405882-8.00003-9

    Article  CAS  PubMed  Google Scholar 

  12. Chiu J, Hogg PJ (2019) Allosteric disulfides: sophisticated molecular structures enabling flexible protein regulation. J Biol Chem 294:2929–2960. https://doi.org/10.1074/jbc.REV118.005604

    Article  Google Scholar 

  13. Saurin AT, Neubert H, Brennan JP, Eaton P (2004) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci USA 101:17982–17987. https://doi.org/10.1073/pnas.0404762101

    Article  CAS  PubMed  Google Scholar 

  14. Eaton P, Shattock MJ (2002) Purification of proteins susceptible to oxidation at cysteine residues: identification of malate dehydrogenase as a target for S-glutathionylation. Ann NY Acad Sci 973:529–532. https://doi.org/10.1111/j.1749-6632.2002.tb04694.x

    Article  CAS  PubMed  Google Scholar 

  15. Lind C, Gerdes R, Hammell Y, Schuppe-Koistinen I, von Lowenhielm HB, Holmgren A, Cotgreave IA (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406:229–240. https://doi.org/10.1016/s0003-9861(02)00468-x

    Article  CAS  PubMed  Google Scholar 

  16. Rehder DS, Borges CR (2010) Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 49:7748–7755. https://doi.org/10.1021/bi1008694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiols proteins: Implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 279:47939–47951. https://doi.org/10.1074/jbc.M408011200

    Article  CAS  PubMed  Google Scholar 

  18. Wolhuter K, Whitwell HJ, Switzer CH, Burgoyne JR, Timms JF, Eaton P (2018) Evidence against stable protein S-nitrosylation as a widespread mechanism of post-translational regulation. Mol Cell 69:438–450. https://doi.org/10.1016/j.molcel.2017.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stocker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28:558–573. https://doi.org/10.1089/ars.2017.7162

    Article  CAS  PubMed  Google Scholar 

  20. Foley TD, Stredny CN, Coppa TM, Gubbiotti MA (2010) An improved phenylarsine oxide-affinity method identifies triose phosphate isomerase as a candidate redox receptor protein. Neurochem Res 35:306–314. https://doi.org/10.1007/s11064-009-0056-z

    Article  CAS  PubMed  Google Scholar 

  21. Adams E, Jeter D, Cordes AW, Kolis JW (1990) Chemistry of organometalloid complexes with potential antidotes: structure of an organoarsenic(III) dithiolate ring. Inorg Chem 248:1500–1503

    Article  Google Scholar 

  22. Foley TD, Cantarella KM, Gillespie PF, Stredny ES (2014) Protein vicinal thiol oxidations in the healthy brain: not so radical links between physiological oxidative stress and neural cell activities. Neurochem Res 39:2030–2039. https://doi.org/10.1007/s11064-014-1378-z

    Article  CAS  PubMed  Google Scholar 

  23. Li R, Kast J (2017) Biotin switch assays for quantitation of reversible cysteine oxidation. Methods Enzymol 585:269–284. https://doi.org/10.1016/bs.mie.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  24. Michaelis ML, Jiang L, Michaelis EK (2017) Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes. Methods Mol Biol 1538:107–119. https://doi.org/10.1007/978-1-4939-6688-2_9

    Article  CAS  PubMed  Google Scholar 

  25. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protocol 8:1551–1566. https://doi.org/10.1038/nprot.2013.092

    Article  CAS  Google Scholar 

  26. Lundgren DH, Hwang SI, Wu L, Han DK (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53. https://doi.org/10.1586/epr.09.69

    Article  CAS  PubMed  Google Scholar 

  27. Thomas GD, O'Rourke B, Sikkink R, Marban E, Victor RG (1997) Differential modulation of cortical synaptic activity by calcineurin (phosphatase 2B) versus phosphatases 1 and 2A. Brain Res 749:101–108. https://doi.org/10.1016/s0006-8993(96)01305-4

    Article  CAS  PubMed  Google Scholar 

  28. Marcaida G, Kosenko E, Minana MD, Grisolia S, Felipo V (1996) Glutmate induces a calcineurin-mediated dephosphorylation of Na+, K(+)-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 66:99–104. https://doi.org/10.1046/j.1471-4159.1996.66010099.x

    Article  CAS  PubMed  Google Scholar 

  29. Sun T, Wu XS, Xu J, McNeil BD, Pang ZP, Yang W, Bai L, Qadri S, Molkentin JD, Yue DT, Wu LG (2010) The role of calcium/calmodulin-activated calcineurin in rapid and slow endocytosis at central synapses. J Neurosci 30:11838–11847. https://doi.org/10.1523/JNEUROSCI.1481-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foley TD, Katchur KM, Gillespie PF (2016) Disulfide stress targets modulators of excitotoxicity in otherwise healthy brains. Neurochem Res 41:2763–2770. https://doi.org/10.1007/s11064-016-1991-0

    Article  CAS  PubMed  Google Scholar 

  31. Gevondyan NM, Gevondyan VS, Modyanov NN (1993) Location of disulfide bonds in the Na+, K(+)-ATPase alpha subunit. Biochem Mol Biol Int 30:347–355

    CAS  PubMed  Google Scholar 

  32. Bencsath FA, Shartava A, Monteiro CA, Goodman SR (1996) Identification of the disulfide-linked peptide in irreversibly sickled cell beta-actin. Biochemistry 35:4403–4408. https://doi.org/10.1021/bi960063n

    Article  CAS  PubMed  Google Scholar 

  33. Chaudhuri AR, Khan IA, Luduena RF (2001) Detection of disulfide bonds in bovine brain tubulin and their role in protein folding and microtubule assembly in vitro: a novel disulfide detection approach. Biochemistry 40:8834–8841. https://doi.org/10.1021/bi0101603

    Article  CAS  PubMed  Google Scholar 

  34. Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354. https://doi.org/10.1074/jbc.272.6.3346

    Article  CAS  PubMed  Google Scholar 

  35. Uniprot Consortium (2019) Uniprot: A worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  36. Garcia J, Han D, Sancheti H, Yap LP, Kaplowitz N, Cadenas E (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem 285:39646–39654. https://doi.org/10.1074/jbc.M110.164160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cobley JN, Noble A, Jimenez-Fernandez E, Valdivia Moya MT, Guille M, Husi H (2019) Catalyst-free click PEGylation reveals substantial mitochondrial ATP synthase subunit alpha oxidation before and after fertilisation. Redox Biol 26:101258. https://doi.org/10.1016/j.redox.2019.101258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cobley J, Nobe A, Bessell R, Guille M, Husi H (2020) Reversible thiol oxidation inhibits the mitochondrial ATP synthase in Xenopus laevis oocytes. Antioxidants 9:E215. https://doi.org/10.3390/antiox9030215

    Article  CAS  PubMed  Google Scholar 

  39. Bianchet MA, Hullihen J, Pedersen PL, Amzel LM (1998) The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sci USA 95:11065–11070. https://doi.org/10.1073/pnas.95.19.11065

    Article  CAS  PubMed  Google Scholar 

  40. Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12:53–91. https://doi.org/10.1089/ARS.2009.2510

    Article  CAS  PubMed  Google Scholar 

  41. Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X, Anashkina AA, Makro A, Lopina OD, Gasmann M, Makarov AA, Bogdanova A (2012) S-Glutathionylation of the Na, K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J Biol Chem 287:32195–32205. https://doi.org/10.1074/jbc.M112.391094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–27858. https://doi.org/10.1074/jbc.M110.101196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mailloux RJ (2018) Mitochondrial antioxidants and the maintenance of cellular hydrogen peroxide levels. Oxid Med Cell Longevity 2018:7857251. https://doi.org/10.1155/2018/7857251

    Article  CAS  Google Scholar 

  44. Mailloux RJ (2020) Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals. Redox Biol 32:101472. https://doi.org/10.1016/j.redox.2020.101472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Reyes I, Cuezva JM (2014) The H(+)-ATPase: a gate to ROS-mediated cell death or cell survival. Biochim Biophys Acta 1837:1099–1112. https://doi.org/10.1016/j.bbabio.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  46. Barinova KV, Serebryakova MV, Muronetz VI, Schmalhausen EV (2017) S-Glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150–C154 intrasubunit disulfide bond in the active site of the enzyme. Biochim Biophys Acta 1861:3167–3177. https://doi.org/10.1016/j.bbagen.2017.09.008

    Article  CAS  Google Scholar 

  47. Bernstein BW, Bamburg JR (2003) Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci 23:1–6

    Article  CAS  Google Scholar 

  48. Rangaruju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156:825–835. https://doi.org/10.1016/j.cell.2013.12.042

    Article  CAS  Google Scholar 

  49. Bogumil R, Namgaladze D, Schaarschmidt D, Schmactel T, Hellstern S, Mutzel R, Ullrich V (2000) Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox regulation. Eur J Biochem 267:1407–1415. https://doi.org/10.1046/j.1432-1327.2000.01133.x

    Article  CAS  PubMed  Google Scholar 

  50. Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18:9835–9844

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Scranton for the financial support for this work. They also thank Ms. Courtney Higgins for technical support and Mr. Richard Trygar for administrative support and of this project.

Funding

This work was not supported by external funding.

Author information

Authors and Affiliations

Authors

Contributions

TDF designed the study, supervised the performance of the work and the collection and analyses of data, and wrote most of the manuscript. GM and MCA performed all of the laboratory work, including refinement of methods, and contributed to data analyses and manuscript preparation. All authors approved the final paper.

Corresponding author

Correspondence to Timothy D. Foley.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical Approval

The study was approved by the Institutional Animal Care and Use Committee of the University of Scranton (2019, Protocol #7-19).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foley, T.D., Montovano, G. & Camacho Ayala, M. The Reducible Disulfide Proteome of Synaptosomes Supports a Role for Reversible Oxidations of Protein Thiols in the Maintenance of Neuronal Redox Homeostasis. Neurochem Res 45, 1825–1838 (2020). https://doi.org/10.1007/s11064-020-03046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03046-7

Keywords

Navigation