Skip to main content

Advertisement

Log in

Characteristics of high-frequency attenuation in the Dead Sea Basin

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

In this study, we derive the characteristics of high-frequency attenuation and excitation of ground motion for the Dead Sea Basin (DSB) area by regressing the peak amplitudes of narrowband-filtered velocity seismograms measured around the shear wave arrivals. We analyzed about 2000 seismograms from 43 local earthquakes in the magnitude range of MW = 0.9–4.5 that occurred in and around the DSB. The regional crustal attenuation is modeled with a frequency-independent piece-wise continuous linear geometrical spreading function and a frequency-dependent quality parameter Q. Our analysis exhibits that S wave attenuation in the DSB has irregular behavior with the effects of arrivals of supercritical reflections. For distances r ≤ 20 km, the geometrical spreading is 1/r; for distances r ≥ 40 km, the geometric attenuation is r−0.4; and for distances 20 < r <40 km, it is r−0.5. The quality parameter Q is modeled as Q = 68f0.5. The excitation is modeled using the proposed propagation model, increasing stress drop and a high-frequency roll-off parameter κ = 0.03 s. To model the theoretical excitation, we use stress drop values ∆σ = 3 ΜPa, ∆σ = 4 ΜPa, ∆σ = 8 ΜPa, and ∆σ = 9 MPa for earthquakes of MW = 3, MW = 3.3, MW = 4, and MW = 4.5 and site amplification factor of 3. Applying the extended coda normalization method to earthquakes in the DSB area provides quality factors for S and P waves of Qs =80f0.81 and QP = 41f0.84 and QS/QP ratio varying in the range of 1.7–2.9. Anisotropy of seismic wave attenuation in the DSB area is observed. The main direction of anisotropy N20° (110°) is determined based on the model of two orthogonal components producing maximum separation of the attenuation function values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam L, Batzle M, Lewallen KT, van Wijk K (2009) Seismic wave attenuation in carbonates. J Geophys Res 114:B06208. https://doi.org/10.1029/2008JB005890

    Article  Google Scholar 

  • Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Int 21:50–60

    Article  Google Scholar 

  • Akinci A, Malagnini L, Herrmann RB, Pino NA, Scognamiglio L, Eyidogan H (2001) High-frequency ground motion in the Erzincan region, Turkey: inferences from small earthquakes. Bull Seismol Soc Am 91:1446–1455

    Article  Google Scholar 

  • Akinci A, Malagnini L, Herrmann RB, Gök R, Sorensen M (2006) Ground motion scaling in the Marmara region, Turkey. Geophys J Int 166:635–651

    Article  Google Scholar 

  • Akinci A, D’Amico S, Malagnini L, Mecuri A (2013) Scaling earthquake ground motions in western Anatolia, Turkey. Phys Chem Earth 63:124–135

    Article  Google Scholar 

  • Akinci A, Malagnini L, Herrmann RB, Kalafat D (2014) High-frequency attenuation in the Lake Van region, Eastern Turkey. Bull Seismol Soc Am 104:1400–1409

    Article  Google Scholar 

  • Anderson JG, Hough SE (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74:1969–1993

    Google Scholar 

  • Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor and Francis Group, London

    Google Scholar 

  • Bartov Y, Sneh A, Fleischer L, Arad Vand Rosensaft M (2002) Potentially active faults in Israel Geol Survey Israel Rept 29/2002

  • Bartov Y, Agnon A, Enzel Y, Stein M (2006) Late Quaternary faulting and subsidence in the Central Dead Sea basin. Israel J Earth Sci 55:17–31

    Article  Google Scholar 

  • Best AI, Sothcott J, McCann C (2007) A laboratory study of seismic velocity and attenuation anisotropy in near-surface sedimentary rocks. Geophys Prospect 55:609–625

    Article  Google Scholar 

  • Bodin P, Malagnini L, Akinci A (2004) Ground motion scaling in the Kachchh basin, India, deduced from after-shocks of the 2001 Mw7.6 Bhuj earthquake. Bull Seismol Soc Am 94:818–827

    Article  Google Scholar 

  • Boore D, Boatwright J (1984) Average body wave radiation coefficients. Bull Seismol Soc Am 74:1615–1621

    Google Scholar 

  • Boore D, Joyner WB (1997) Site amplification for generic rock sites. Bull Seismol Soc Am 87:327–341

    Google Scholar 

  • Braeuer B, Asch G, Hofstetter A, Haberland C, Jaser D, El-Kelani R, Weber M (2012) Microseismicity distribution in the southern Dead Sea area and its implications on the structure of the basin. Geophys J Int 188:873–878

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Cartwright DE, Longuet-Higgins MS (1956) The statistical distributions of the maxima of random function. Proc R Soc London 237:212–232

    Google Scholar 

  • Eppelbaum LV, Katz YI (2015) Eastern Mediterranean: combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Mar Petrol Geol 65:198–216

    Article  Google Scholar 

  • Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176

    Article  Google Scholar 

  • Gottschämmer E, Wenzel F, Wust-Bloch H, Ben-Avraham Z (2002) Earthquake modeling in the Dead Sea Basin. Geophys Res Lett 29:1–8

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Hough SE, Anderson JG, Brune J, Vernon F, Berger J, Fletcher J, Haar L, Hanks T, Baker L (1988) Attenuation near Anza, California. Bull Seismol Soc Am 78:672–691

    Google Scholar 

  • Kaviani A, Rümpker G, Weber M, Asch G (2011) Short-scale variations of shear-wave splitting across the Dead Sea basin: evidence for the effects of sedimentary fill. Geophys Res Lett 38:L04308. https://doi.org/10.1029/2010GL046464

    Article  Google Scholar 

  • Kaviani A, Hofstetter A, Rümpker G, Weber M (2013) Investigation of seismic anisotropy beneath the Dead Sea fault using dense networks of broadband stations. J Geophys Res 118:1–16. https://doi.org/10.1002/jgrb.50250

    Article  Google Scholar 

  • Levin V, Henza A, Park J, Rodgers A (2006) Texture of mantle lithosphere along the Dead Sea Rift: recently imposed or inherited. Phys Earth Planet Int 158:174–189

    Article  Google Scholar 

  • Malagnini L, Herrmann RB (2000) Ground-motion scaling in the region of the Umbria-Marche earthquake of 1997. Bull Seismol Soc Am 90:1041–1051

    Article  Google Scholar 

  • Malagnini L, Hermann RB, Koch K (2000a) Regional ground motion scaling in Central Europe. Bull Seismol Soc Am 90:1052–1061

    Article  Google Scholar 

  • Malagnini L, Herrmann RB, Di Bona M (2000b) Ground-motion scaling in the Apennines (Italy). Bull Seismol Soc Am 90:1062–1081

    Article  Google Scholar 

  • Malagnini L, Akinci A, Herrmann RB, Pino NA, Scognamiglio L (2002) Characteristics of the ground motion in northeastern Italy. Bull Seismol Soc Am 92:2186–2204

    Article  Google Scholar 

  • Malagnini L, Mayeda K, Uhrhammer R, Akinci A, Herrmann RB (2007) A regional ground motion excitation/attenuation model for the San Francisco region. Bull Seismol Soc Am 97:843–862. https://doi.org/10.1785/0120060101

    Article  Google Scholar 

  • Malagnini L, Scognamiglio L, Mercuri A, Akinci A, Mayeda K (2008) Strong evidence for non-similar earthquake source scaling in central Italy. Geophys Res Lett 35:L17303. https://doi.org/10.1029/2008GL034310

    Article  Google Scholar 

  • Malagnini L, Akinci A, Mayeda K, Munafò I, Herrmann RB, Mercuri A (2011) Characterization of earthquake-induced ground motion from the L’Aquila seismic sequence of 2009, Italy. Geophys J Int 184:325–337

    Article  Google Scholar 

  • Meirova T (2008) Ground motion scaling in Israel. Tel-Aviv University, Dissertation

    Google Scholar 

  • Meirova T, Hofstetter A (2017) Source parameters of regional earthquakes recorded by Israel Seismic Network: implications for earthquake scaling. Bull Earth Eng 15:3417–3436

    Article  Google Scholar 

  • Meirova T, Hofstetter A, Ben-Avraham Z, Steinberg D, Malagnini L, Akinci A (2008) Weak-motion-based predictive relationships for the ground motion in Israel. Geophys J Int 175:1127–1140

    Article  Google Scholar 

  • Oth A, Wenzel F, Wust-Bloch H, Ben-Avraham Z (2007) Parameterization of a composite attenuation relation for the Dead Sea area based on 3-D modeling of elastic wave propagation. Pure Appl Geophys 164:23–37

    Article  Google Scholar 

  • Padhy S (2009) Characteristics of body-waves attenuations in the Bhuj crust. Bull Seismol Soc Am 99:3300–3313

    Article  Google Scholar 

  • Raoof M, Herrmann RB, Malagnini L (1999) Attenuation and excitation of three-component ground motion in southern California. Bull Seismol Soc Am 89:888–902

    Google Scholar 

  • Rümpker G, Ryberg T, Bock G, Desert Seismology Group (2003) Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy. Nature 425:497–501

    Article  Google Scholar 

  • Ryberg T, Rümpker G, Haberland C, Stromeyer D, Weber M (2005) Simultaneous inversion of shear wave splitting observations from seismic arrays. J Geophys Res 10:B03301. https://doi.org/10.1029/2004JB003303

    Article  Google Scholar 

  • Shani-Kadmiel S, Tsesarsky M, Louie JN, Gvirtzman Z (2012) Simulation of seismic-wave propagation through geometrically complex basins: Dead Sea Basin. Bull Seismol Soc Am 102:1729–1739

    Article  Google Scholar 

  • Stein S, Wysession M (2003) An introduction to seismology, earthquakes and earth structure. Blackwell Publishing, Oxford

    Google Scholar 

  • Weber M, DESIRE Group (2009) Anatomy of the Dead Sea transform from lithospheric to microscopic scale. Rev Geophys 47. https://doi.org/10.1029/2008RG000264

  • Wessel P, Smith W (1991) Free software helps maps and display data. EOS Trans AGU 72:441

    Article  Google Scholar 

  • Winkler K, Nur A (1979) Pore fluids and seismic attenuation in rocks. Geophys Res Lett 6:1–4

    Article  Google Scholar 

  • Winkler K, Nur A (1982) Seismic attenuation: effects of pore fluids and frictional sliding. Geophysics 47:1–15. https://doi.org/10.1190/1.1441276

    Article  Google Scholar 

  • Yoshimoto K, Sato H, Ohtake M (1993) Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophys J Int 114:165–174

    Article  Google Scholar 

  • Zaslavsky Y, Hofstetter A (2019) Empirical estimate of resonance frequency at the Dead Sea basin. J Seismol 23:165–179. https://doi.org/10.1007/s10950-018-9799-9

    Article  Google Scholar 

  • Zhu T (2017) Numerical simulation of seismic wave propagation in viscoelastic anisotropic media using frequency-independent Q wave equation. Geophys 82:1–46. https://doi.org/10.1190/geo2016-0635.1

    Article  Google Scholar 

  • Zhubayev A, Houben ME, Smeulders DMJ, Barnhoorn A (2016) Ultrasonic velocity and attenuation anisotropy of Shales, Whitby, United Kingdom. Geophys 81:45–56. https://doi.org/10.1190/geo2015-0211.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Geophysical Instrument Pool Potsdam for providing the instruments for the DESIRE experiments and GEOFON for data archiving (http://geofon-open2.gfz-potsdam.de/doi/network/Z4/2006). Figures in this report were prepared using the GMT program (Wessel and Smith 1991). We thank anonymous reviewer whose comments and suggestions were helpful in preparing our paper.

Funding

The Earth Sciences and Research Administration, Ministry of Energy and Water, Israel, supported the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Meirova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Characteristics of S wave propagation and excitation in the Dead Sea Basin area obtained by regressing the peak amplitudes of narrowband-filtered velocity seismograms

• Anisotropy of seismic wave attenuation in the DSB area is observed based on the model of two orthogonal components

• Prediction of earthquake-induced ground motions in the DSB region

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meirova, T., Hofstetter, A. & Eppelbaum, L. Characteristics of high-frequency attenuation in the Dead Sea Basin. J Seismol 24, 479–494 (2020). https://doi.org/10.1007/s10950-020-09927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-020-09927-2

Keywords

Navigation