Skip to main content
Log in

Hydrophobic porous BN/SiO2@PU as ternary adsorbents for efficient oil/water separation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Developing efficient sorbent materials is of worldwide importance to protect the environment against frequent oil spills and chemical leakage accidents. A simple and low-cost process was adopted to prepare hydroxylated BN bonded with SiO2 sol and then embed BN/SiO2 on polyurethane (PU) foam(BN/SiO2@PU) via dip-coating. BN/SiO2@PU could float on water due to its hydrophobicity. Absorption tests were performed to test its performance using various organic solvents or oil. Comparing with BN/SiO2 aerogel, BN@PU and SiO2@PU, BN/SiO2@PU had a high absorption rate and a high absorption capacity for both organic solvents and oil, and could absorb as much as 40 times its weight. It was also able to selectively absorb oil or organic solvents from an oil–water mixture with separation efficiency higher than 95% and had good recyclability of 20 absorption cycles even towards commercial waste oil. Furthermore, BN/SiO2@PU with high temperature stability can be used under harsh condition. The performance of the prepared adsobent reported is competitive and superior to other reported materials, confirming its potential application in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Unur, Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Microporous Mesoporous Mater. 168, 92–101 (2013). https://doi.org/10.1016/j.micromeso.2012.09.027

    Article  CAS  Google Scholar 

  2. C.R. Park, S.J. Yang, J.H. Kang, H. Jung, T. Kim, Preparation of a freestanding, macroporous reduced graphene oxide film as an efficient and recyclable sorbent for oils and organic solvents. J. Mater. Chem. A. 1, 9427–9432 (2013). https://doi.org/10.1039/c3ta10663b

    Article  CAS  Google Scholar 

  3. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marĩas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599

    Article  CAS  PubMed  Google Scholar 

  4. J. Yuan, X. Liu, O. Akbulut, J. Hu, S.L. Suib, J. Kong, F. Stellacci, Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 3, 332–336 (2008). https://doi.org/10.1038/nnano.2008.136

    Article  CAS  PubMed  Google Scholar 

  5. H. Bi, Z. Yin, X. Cao, X. Xie, C. Tan, X. Huang, B. Chen, F. Chen, Q. Yang, X. Bu, X. Lu, L. Sun, H. Zhang, Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25, 5916–5921 (2013). https://doi.org/10.1002/adma.201302435

    Article  CAS  PubMed  Google Scholar 

  6. X.C. Gui, Z.P. Zeng, Z.Q. Lin, Q.M. Gan, R. Xiang, Y. Zhu, A.Y. Cao, Z.K. Tang, Magnetic and Highly Recyclable Macroporous Carbon Nanotubes for Spilled Oil Sorption and Separation. ACS Appl. Mater. Interfaces. 5, 5845–5850 (2013). https://doi.org/10.1021/am4015007

    Article  CAS  PubMed  Google Scholar 

  7. Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Mesopore-Modified Zeolites : Preparation, Characterization, and Applications. Chem. Rev. 106, 896–910 (2006). https://doi.org/10.1021/cr040204o

    Article  CAS  PubMed  Google Scholar 

  8. I.A.W. Tan, B.H. Hameed, A.L. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 127, 111–119 (2007). https://doi.org/10.1016/j.cej.2006.09.010

    Article  CAS  Google Scholar 

  9. V. Kumar, K. Vellingiri, D. Kukkar, S. Kumar, K.H. Kim, Recent advances and opportunities in the treatment of hydrocarbons and oils: Metal-organic frameworks-based approaches. Crit. Rev. Environ. Sci. Technol. 49, 587–654 (2019). https://doi.org/10.1080/10643389.2018.1554402

    Article  CAS  Google Scholar 

  10. J.T. Korhonen, M. Kettunen, R.H.A. Ras, O. Ikkala, Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces. 3, 1813–1816 (2011). https://doi.org/10.1021/am200475b

    Article  CAS  PubMed  Google Scholar 

  11. J. Lin, F. Tian, Y. Shang, F. Wang, B. Ding, J. Yu, Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale. 4, 5316–5320 (2012). https://doi.org/10.1039/c2nr31515g

    Article  CAS  PubMed  Google Scholar 

  12. J. Lin, F. Tian, Y. Shang, F. Wang, B. Ding, J. Yu, Z. Guo, Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale. 5, 2745–2755 (2013). https://doi.org/10.1039/c3nr34008b

    Article  CAS  PubMed  Google Scholar 

  13. X. Dong, J. Chen, Y. Ma, J. Wang, M.B. Chan-Park, X. Liu, L. Wang, W. Huang, P. Chen, Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem. Commun. 48, 10660–10662 (2012). https://doi.org/10.1039/c2cc35844a

    Article  CAS  Google Scholar 

  14. D.D. Nguyen, N.H. Tai, S.B. Lee, W.S. Kuo, Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 5, 7908–7912 (2012). https://doi.org/10.1039/c2ee21848h

    Article  CAS  Google Scholar 

  15. Y. Chu, Q.M. Pan, Three-Dimensionally Macroporous Fe/C Nanocomposites As Highly Selective Oil-Absorption Materials. ACS Appl. Mater. Interfaces. 4, 2420–2425 (2012). https://doi.org/10.1021/am3000825

    Article  CAS  PubMed  Google Scholar 

  16. A. Li, H.X. Sun, D.Z. Tan, W.J. Fan, S.H. Wen, X.J. Qing, G.X. Li, S.Y. Li, W.Q. Deng, Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ. Sci. 4, 2062–2065 (2011). https://doi.org/10.1039/c1ee01092a

    Article  CAS  Google Scholar 

  17. J.-D. Brassard, D.K. Sarkar, J. Perron, Fluorine Based Superhydrophobic Coatings. Appl. Sci. 2, 453–464 (2012). https://doi.org/10.3390/app2020453

    Article  CAS  Google Scholar 

  18. B.X. Tian, T. Verho, R.H.A. Ras, Moving superhydrophobic surfaces toward real-world applications. Science 352, 142–143 (2016). https://doi.org/10.1126/science.aaf2073

    Article  CAS  PubMed  Google Scholar 

  19. M. Spaeth, W. Barthlott, Lotus-Effect®: Biomimetic super-hydrophobic surfaces an their application. Adv. Sci. Technol. 60, 38–46 (2008). https://doi.org/10.4028/www.scientific.net/AST.60.38

    Article  Google Scholar 

  20. X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, Superhydrophobic surfaces : from structural control to functional application. J. Mater. Chem. 18, 621–633 (2008). https://doi.org/10.1039/b711226b

    Article  CAS  Google Scholar 

  21. E. Kobina, D. Kobina, X. Lv, B. Liu, X. Xiao, Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 373, 531–546 (2019). https://doi.org/10.1016/j.cej.2019.05.077

    Article  CAS  Google Scholar 

  22. S. Nanofibers, L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Creation of a superhydrophobic surface from an amphiphilic polymer. Angew. Chemie—Int. Ed. 42, 800–802 (2003). https://doi.org/10.1002/anie.200390212

    Article  Google Scholar 

  23. X. Lü, Z. Cui, W. Wei, J. Xie, L. Jiang, J. Huang, J. Liu, Constructing polyurethane sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent. Chem. Eng. J. 284, 478–486 (2016). https://doi.org/10.1016/j.cej.2015.09.002

    Article  CAS  Google Scholar 

  24. Y. Zhang, S. Wei, F. Liu, Y. Du, S. Liu, Y. Ji, T. Yokoi, T. Tatsumi, F.S. Xiao, Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds. Nano Today. 4, 135–142 (2009). https://doi.org/10.1016/j.nantod.2009.02.010

    Article  CAS  Google Scholar 

  25. X. Zhang, L. Xu, Y. Shen, L. Wang, Y. Ding, One-Step Fabrication of Self-Healing and Durable Superhydrophobic Cotton Fabrics Based on Silica Aerogel. J. Nanosci. Nanotechnol. 18, 7721–7731 (2018). https://doi.org/10.1166/jnn.2018.15548

    Article  CAS  Google Scholar 

  26. Q. Zhu, Q. Pan, F. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J. Phys. Chem. C. 115, 17464–17470 (2011). https://doi.org/10.1021/jp2043027

    Article  CAS  Google Scholar 

  27. T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun’ko, J. Coleman, Oxygen radical functionalization of boron nitride nanosheets. J. Am. Chem. Soc. (2012). https://doi.org/10.1021/ja3080665

    Article  PubMed  Google Scholar 

  28. J. Gu, H. Fan, C. Li, J. Caro, H. Meng, Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation. Angew. Chemie - Int. Ed. (2019). https://doi.org/10.1002/anie.201814487

    Article  Google Scholar 

  29. C. Liu, J. Yang, Y. Tang, L. Yin, H. Tang, C. Li, Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil-water separation. Colloids Surfaces A Physicochem. Eng. Asp. 468, 10–16 (2015). https://doi.org/10.1016/j.colsurfa.2014.12.005

    Article  CAS  Google Scholar 

  30. C. Yu, C. Yu, L. Cui, Z. Song, X. Zhao, Y. Ma, L. Jiang, Facile Preparation of the Porous PDMS Oil-Absorbent for Oil/Water Separation. Adv. Mater. Interfaces. (2017). https://doi.org/10.1002/admi.201600862

    Article  Google Scholar 

  31. Q. Zhu, Y. Chu, Z. Wang, N. Chen, L. Lin, F. Liu, Q. Pan, Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A. 1, 5386–5393 (2013). https://doi.org/10.1039/c3ta00125c

    Article  CAS  Google Scholar 

  32. G. Hayase, K. Kanamori, M. Fukuchi, H. Kaji, K. Nakanishi, Facile Synthesis of Marshmallow-like Macroporous Gels Usable under Harsh Conditions for the Separation of Oil and Water. Angew. Chemie - Int. Ed. 52, 1986–1989 (2013). https://doi.org/10.1002/anie.201207969

    Article  CAS  Google Scholar 

  33. F. Chen, Y. Lu, X. Liu, J. Song, G. He, M.K. Tiwari, C.J. Carmalt, I.P. Parkin, Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201702926

    Article  PubMed  PubMed Central  Google Scholar 

  34. J. Gao, X. Huang, H. Xue, L. Tang, R.K.Y. Li, Facile preparation of hybrid microspheres for super-hydrophobic coating and oil-water separation. Chem. Eng. J. 326, 443–453 (2017). https://doi.org/10.1016/j.cej.2017.05.175

    Article  CAS  Google Scholar 

  35. Y. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, Carbon Aerogel from Winter Melon for Highly E ffi cient and Recyclable Oils and Organic Solvents Absorption. ACS Sustain. Chem. Eng. (2014). https://doi.org/10.1021/sc500161b

    Article  Google Scholar 

  36. B. Wang, J. Li, G. Wang, W. Liang, Y. Zhang, L. Shi, Z. Guo, W. Liu, Methodology for Robust Superhydrophobic Fabrics and Sponges from In Situ Growth of Transition Metal / Metal Oxide Nanocrystals with Thiol Modification and Their Applications in Oil / Water Separation. ACS Appl. Mater. Interfaces. 5, 1827–1839 (2013)

    Article  CAS  Google Scholar 

  37. Z. Wu, C. Li, H. Liang, Y. Zhang, X. Wang, J. Chen, S. Yu, Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Sci. Rep. (2014). https://doi.org/10.1038/srep04079

    Article  PubMed  PubMed Central  Google Scholar 

  38. J. Xiao, W. Lv, Y. Song, Q. Zheng, Graphene / nanofiber aerogels : performance regulation towards multiple applications in dye adsorption and oil / water separation. Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2017.12.156

    Article  Google Scholar 

  39. H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun, R.S. Ruoff, Spongy graphene as a highly effi cient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. (2012). https://doi.org/10.1002/adfm.201200888

    Article  Google Scholar 

  40. Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang, J. Gao, Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces. 5, 10018–10026 (2013). https://doi.org/10.1021/am4024252

    Article  CAS  PubMed  Google Scholar 

  41. K. Jayaramulu, K. Kumara, R. Datta, C. Rçsler, M. Petr, M. Otyepka, R. Zboril, R.A. Fischer, Biomimetic Superhydrophobic / Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil—Water Separation. Angew. Chemie—Int. Ed. 55, 1178–1182 (2016). https://doi.org/10.1002/anie.201507692

    Article  CAS  Google Scholar 

  42. H. Cong, X. Ren, P. Wang, S. Yu, Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process. ACS Nano 6, 2693–2703 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Opening Project of Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology (CJSZ2018002), Special Fund of Jiangsu Province for the Transformation of Science and Technology and Achievements in Transport (2018Y29).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomeng Lv or Jun Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sam, E.K., Sam, D.K., Chen, J. et al. Hydrophobic porous BN/SiO2@PU as ternary adsorbents for efficient oil/water separation. J Porous Mater 27, 1149–1158 (2020). https://doi.org/10.1007/s10934-020-00892-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00892-2

Keywords

Navigation