Skip to main content
Log in

Mechanism of antioxidant properties of quercetin and quercetin-DNA complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quercetin is the most abundant flavonoid with potent antioxidant activities. In the current research, the antioxidant properties of quercetin and quercetin-DNA complex were investigated theoretically and experimentally. Free radical scavenging experiments with thiobarbituric acid–reactive substances (TBARS) and 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) indicate that quercetin can protect DNA from free radical damage, and the antioxidant activity of the quercetin-DNA complex is stronger than quercetin. Deoxyriboseadenine-quercetin-dimethylphosphinic acid (DA-Q-P) model was extracted from molecular docking. The contributions of hydroxyl groups in quercetin and DA-Q-P model molecules to the antioxidant activity were investigated by computation of bond dissociation enthalpy (BDE) parameter and Fukui function, at B3LYP/6-311++G(2d,2p) level of theory. The results outlined that the hydroxyl groups from the B ring (3′-OH and 4′-OH) have a lower BDE compared with the ones from the A and C rings (3-OH, 5-OH, and 7-OH) and hence define antioxidant activity. The computational result based on Fukui function shows that the B ring is an electrophilic region. The interaction of antioxidant with DNA discovered at the molecular level could provide the structural basis of the antioxidant property of active ingredients in the flavonoids. It is of great significance to study the interaction mechanism between the small drug molecules with DNA at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valacchi G, Davis P (2008) Oxidants in biology: a question of balance. Springer, Dordrecht

  2. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585(2–3):325–337

    Article  CAS  PubMed  Google Scholar 

  3. Kim GN, Jang HD (2009) Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in HepG2 cells. Ann N Y Acad Sci 1171(1):530–537

    Article  CAS  PubMed  Google Scholar 

  4. Robaszkiewicz A, Balcerczyk A, Bartosz G (2007) Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 31(10):1245–1250

    Article  CAS  PubMed  Google Scholar 

  5. Xu D, Hu M-J, Wang Y-Q, Cui Y-L (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6):1123

    Article  CAS  PubMed Central  Google Scholar 

  6. Selvaraju V, Joshi M, Suresh S, Sanchez JA, Maulik N, Maulik G (2012) Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease–an overview. Toxicol Mech Methods 22(5):330–335

    Article  CAS  PubMed  Google Scholar 

  7. Stone MP, Huang H, Brown KL, Shanmugam G (2011) Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 8(9):1571–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179(16):5188–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Zhen Z, Jiang J-H, Shen G-L, Yu R-Q (2009) Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J Am Chem Soc 131(34):12325–12332

    Article  CAS  PubMed  Google Scholar 

  10. Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, Kikuchi K (2018) Synthetic-molecule/protein hybrid probe with fluorogenic switch for live-cell imaging of DNA methylation. J Am Chem Soc 140(5):1686–1690

    Article  CAS  PubMed  Google Scholar 

  11. Kumar C, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115(19):8547–8553

    Article  CAS  Google Scholar 

  12. Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9(9):2215–2235

    Article  CAS  PubMed  Google Scholar 

  13. Kanakis C, Tarantilis P, Polissiou M, Diamantoglou S, Tajmir-Riahi H (2005) DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J Biomol Struct Dyn 22(6):719–724

    Article  CAS  PubMed  Google Scholar 

  14. Kanakis CD, Tarantilis PA, Polissiou M, Diamantoglou S, Tajmir-Riahi H (2007) An overview of DNA and RNA bindings to antioxidant flavonoids. Cell Biochem Biophys 49(1):29–36

    Article  CAS  PubMed  Google Scholar 

  15. Das A, Majumder D, Saha C (2017) Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage. J Photochem Photobiol B Biol 170:256–262

    Article  CAS  Google Scholar 

  16. Sha Y, Chen X, Niu B, Chen Q (2017) The interaction mode of groove binding between quercetin and calf thymus DNA based on spectrometry and simulation. Chem Biodivers 14(10):e1700133

    Article  CAS  Google Scholar 

  17. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vitorino J, Sottomayor M (2010) DNA interaction with flavone and hydroxyflavones. J Mol Struct 975(1–3):292–297

    Article  CAS  Google Scholar 

  19. Liu Y, Wu X, Zhou H, Liu X, Zhang F, Yang J (2009) The fluorescence enhancement of quercetin–nucleic acid system and the analytical application. Lumin J Biol Chem Lumin 24(6):416–421

    CAS  Google Scholar 

  20. Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sensors Actuators B Chem 119(1):199–208

    Article  CAS  Google Scholar 

  21. Lu X, Chen Y, Chen J, Zhang Y, Zhang L, Li M (2006) Electrochemical studies of the interaction of quercetin with DNA. Int J Electrochem Sci 1:130–138

    CAS  Google Scholar 

  22. Zhu Z, Li C, Li N-Q (2002) Electrochemical studies of quercetin interacting with DNA. Microchem J 71(1):57–63

    Article  CAS  Google Scholar 

  23. Oliveira-Brett AM, Diculescu VC (2004) Electrochemical study of quercetin–DNA interactions. Part I. Analysis in incubated solutions. Bioelectrochemistry 64(2):133–141

    Article  CAS  PubMed  Google Scholar 

  24. Silva JP, Gomes AC, Coutinho OP (2008) Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur J Pharmacol 601(1–3):50–60

    Article  CAS  PubMed  Google Scholar 

  25. Janjua NK, Siddiqa A, Yaqub A, Sabahat S, Qureshi R, ul Haque S (2009) Spectrophotometric analysis of flavonoid–DNA binding interactions at physiological conditions. Spectrochim Acta A Mol Biomol Spectrosc 74(5):1135–1137

    Article  PubMed  CAS  Google Scholar 

  26. Cao W, Chen W, Zheng X, Zheng J (1956) Modified method to evaluate the protection of the antioxidants against hydroxyl radical-mediated DNA damage. Acta Nutri Sin 01

  27. Fukumoto L, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48(8):3597–3604

    Article  CAS  PubMed  Google Scholar 

  28. Zhou F, Wang J, Zhang Y, Wang Q, Guo C, Wang F, Zheng X, Zhang H (2019) Theoretical studies on the bond strength and electron density characteristics in multiple hydrogen bonded arrays. J Mol Graph Model 107439

  29. Bardak F (2019) Experimental and DFT analysis of structural and spectroscopic features of nitroterephthalic acid, and computational insights into its molecular interactions with hER-α via molecular docking. J Mol Struct 1175:458–470

    Article  CAS  Google Scholar 

  30. Abraham CS, Muthu S, Prasana JC, Armaković S, Armaković SJ, Geoffrey B (2019) Computational evaluation of the reactivity and pharmaceutical potential of an organic amine: a DFT, molecular dynamics simulations and molecular docking approach. Spectrochim Acta A Mol Biomol Spectrosc 222:117188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision D. 01. Gaussian. Inc., Wallingford

    Google Scholar 

  34. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  35. Stephens PJ, Devlin F, Chabalowski C, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627

    Article  CAS  Google Scholar 

  36. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129

    Article  Google Scholar 

  37. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  38. Foti MC, Daquino C (2011) Kinetics of the oxidation of quercetin by 1,1-diphenyl-2-picrylhydrazyl (dpph•)

  39. Sak K (2014) Dependence of DPPH radical scavenging activity of dietary flavonoid quercetin on reaction environment. Mini-Rev Med Chem 14(6):494–504

    Article  CAS  PubMed  Google Scholar 

  40. Maciel EN, Almeida SK, da Silva SC, de Souza GL (2018) Examining the reaction between antioxidant compounds and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation. J Mol Model 24(8):218

    Article  PubMed  CAS  Google Scholar 

  41. Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218(2):141–151

    Article  CAS  PubMed  Google Scholar 

  42. Yang F, Song L, Wang H, Wang J, Xu Z, Xing N (2015) Combination of quercetin and 2-methoxyestradiol enhances inhibition of human prostate cancer LNCaP and PC-3 cells xenograft tumor growth. PLoS One 10(5):e0128277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Michalík M, Rimarčík J, Lukeš V, Klein E (2019) Thermodynamics of primary antioxidant action of flavonols in polar solvents. Acta Chim Slov 12(1):108–118

    Article  CAS  Google Scholar 

  44. Rizwana BF, Muthu S, Prasana JC, Abraham CS, Raja M (2018) Spectroscopic (FT-IR, FT-Raman) investigation, topology (ESP, ELF, LOL) analyses, charge transfer excitation and molecular docking (dengue, HCV) studies on ribavirin. Chem Data Collect 17-18:236–250

    Article  Google Scholar 

  45. Ramesh P, Lydia Caroline M, Muthu S, Narayana B, Raja M, Aayisha S (2020) Spectroscopic and DFT studies, structural determination, chemical properties and molecular docking of 1-(3-bromo-2-thienyl)-3-[4-(dimethylamino)-phenyl]prop-2-en-1-one. J Mol Struct 1200:127123

    Article  CAS  Google Scholar 

  46. B FR, Prasana JC, Muthu S, Abraham CS (2019) Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir : a potential antiviral drug. Comput Biol Chem 78:9–17

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Song, Yali Wang or Liguo Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, Y. & Gao, L. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex. J Mol Model 26, 133 (2020). https://doi.org/10.1007/s00894-020-04356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04356-x

Keywords

Navigation