Skip to main content
Log in

Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting (ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55wt%CaF2-20wt%CaO-3wt%MgO-22wt%Al2O3-xwt%B2O3 (x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5wt% and the FeO content ranges from 0.18wt% to 0.22wt% in the slag. When the B2O3 content is ≥1wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.P. Yang, L.G. Wang, C.Q. Dong, G. Xu, T. Morosuk, and G. Tsatsaronis, Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant, Appl. Energy, 112(2013), p. 1087.

    Article  Google Scholar 

  2. J.P. Ciferno, T.E. Fout, A.P. Jones, and J.T. Murphy, Capturing carbon from existing coal-fired power plants, Chem. Eng. Prog., 105(2009), No. 4, p. 33.

    CAS  Google Scholar 

  3. Y.P. Zeng, J.D. Jia, W.H. Cai, S.Q. Dong, and Z.C. Wang, Effect of long-term service on the precipitates in P92 steel, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 913.

    Article  CAS  Google Scholar 

  4. F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Mater. Sci. Eng. A, 378(2004), No. 1–2, p. 299.

    Article  Google Scholar 

  5. P.J. Maziasz, Developing an austenitic stainless steel for improved performance in advanced fossil power facilities, JOM, 41(1989), No. 7, p. 14.

    Article  CAS  Google Scholar 

  6. N. Blaes, B. Donth, and D. Bokelmann, High chromium steel forgings for steam turbines at elevated temperatures, Energy Mater., 2(2007), No. 4, p. 207.

    Article  CAS  Google Scholar 

  7. H. Chalmers and J. Gibbins, Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance, Fuel, 86(2007), No. 14, p. 2109.

    Article  CAS  Google Scholar 

  8. R. Viswanathan and W. Bakker, Materials for ultra-supercritical coal power plants—Turbine materials: Part II, J. Mater. Eng. Perform., 10(2001), No. 1, p. 96.

    Article  CAS  Google Scholar 

  9. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson, A comprehensive model of the electroslag remelting process: description and validation, Metall. Mater. Trans. B, 40(2009), No. 3, p. 271.

    Article  Google Scholar 

  10. Y.W. Dong, Z.H. Jiang, H. Liu, R. Chen, and Z.W. Song, Simulation of multi-electrode ESR process for manufacturing large ingot, ISIJ Int., 52(2012), No. 12, p. 2226.

    Article  CAS  Google Scholar 

  11. S.S. Kasana and O.P. Pandey, Effect of electroslag remelting and homogenization on hydrogen flaking in AMS-4340 ultra-high-strength steels, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 611.

    Article  CAS  Google Scholar 

  12. E. Plöckinger, Electroslag remelting—A modern tool in metallurgy, [in] P. Beeley, ed., The Hatfield Memorial Lectures, vol. 3, Woodhead Publishing Limited, Cambridge, 2005, p. 45.

    Chapter  Google Scholar 

  13. J.A. Van Den Avyle, J.A. Brooks, and A.C. Powell, Reducing defects in remelting processes for high-performance alloys, JOM, 50(1998), No. 3, p. 22.

    Article  CAS  Google Scholar 

  14. S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291.

    Article  CAS  Google Scholar 

  15. V. Knežević, J. Balun, G. Sauthoff, G. Inden, and A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650°C with supporting thermodynamic modelling, Mater Sci. Eng. A, 477(2008), No. 1–2, p. 334.

    Article  Google Scholar 

  16. F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int., 41(2001), No. 6, p. 612.

    Article  CAS  Google Scholar 

  17. T. Ishitsuka, Y. Inoue, and H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel, Oxid. Met., 61(2004), No. 1–2, p. 125.

    Article  CAS  Google Scholar 

  18. A. Mitchell, F. Reyes-Carmona, and E. Samuelsson, The deoxidation of low-alloy steel ingots during ESR, Trans. Iron Steel Inst. Jpn., 24(1984), No. 7, p. 547.

    Article  CAS  Google Scholar 

  19. F. Reyes-Carmona and A. Mitchell, Deoxidation of ESR slags, ISIJ Int., 32(1992), No. 4, p. 529.

    Article  CAS  Google Scholar 

  20. G. Pateisky, H. Biele, and H.J. Fleischer, The reactions of titanium and silicon with Al2O3-CaO-CaF2 slags in the ESR process, J. Vac. Sci. Technol., 9(1972), No. 6, p. 1318.

    Article  CAS  Google Scholar 

  21. S.F. Medina and A. Cores, Thermodynamic aspects in the manufacturing of micro-alloyed steels by the electroslag remelting process, ISIJ Int., 33(1993), No. 12, p. 1244.

    Article  CAS  Google Scholar 

  22. J. Fedko and M. Krucinski, Thermodynamic analysis of boron concentration changes in steel during electroslag remelting, Ironmaking Steelmaking, 16(1989), No. 2, p. 116.

    CAS  Google Scholar 

  23. D.S. Kim, G.J. Lee, M.B. Lee, J.I. Hur, and J.W. Lee, Manufacturing of 9CrMoCoB steel of large ingot with homogeneity by ESR process, IOP Conf. Ser.: Mater. Sci. Eng., 143(2016), art. No. 012002.

  24. V.A. Grigorân, L.N. Belânčikov, and A.Â. Stomahin, Theoretical Principles of Electric Steelmaking, Mir Publishers, Milpitas, 1983, p. 154.

    Google Scholar 

  25. Y.J. Liang, Y.C. Che, and X.X. Liu, Inorganic Thermodynamics Data Book, Northeast University Press, Shenyang, 1993, p. 216.

    Google Scholar 

  26. X.H. Huang, Principles of Iron and Steel Metallurgy, Metallurgical Industry Press, Beijing, 1990, p. 309.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB0300203) and the National Natural Science Foundation of China (No. 51974076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-hua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Lz., Jiang, Zh. & Geng, X. Reaction mechanisms between molten CaF2-based slags and molten 9CrMoCoB steel. Int J Miner Metall Mater 27, 611–619 (2020). https://doi.org/10.1007/s12613-020-1976-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1976-5

Keywords

Navigation