Skip to main content

Advertisement

Log in

Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Hydrostatic cyclic expansion extrusion (HCEE) process at elevated temperatures is proposed as a method for processing less deformable materials such as magnesium and for producing long ultrafine-grained rods. In the HCEE process at elevated temperatures, high-pressure molten linear low-density polyethylene (LLDPE) was used as a fluid to eliminate frictional forces. To study the capability of the process, AM60 magnesium rods were processed and the properties were investigated. The mechanical properties were found to improve significantly after the HCEE process. The yield and ultimate strengths increased from initial values of 138 and 221 MPa to 212 and 317 MPa, respectively. Moreover, the elongation was enhanced due to the refined grains and the existence of high hydrostatic pressure. Furthermore, the microhardness was increased from HV 55.0 to HV 72.5. The microstructural analysis revealed that ultrafine-grained structure could be produced by the HCEE process. Moreover, the size of the particles decreased, and these particles thoroughly scattered between the grains. Finite element analysis showed that the HCEE was independent of the length of the sample, which makes the process suitable for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H.K. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Mater. Des., 43(2013), p. 31.

    Article  CAS  Google Scholar 

  2. S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, and H. Ghanbari, A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application, J. Alloys Compd., 723(2017), p. 467.

    Article  CAS  Google Scholar 

  3. W.J. Xia, Z.H. Chen, D. Chen, and S.Q. Zhu, Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling, J. Mater. Process. Technol., 209(2009), No. 1, p. 26.

    Article  CAS  Google Scholar 

  4. D. Rahmatabadi, M. Tayyebi, R. Hashemi, and G. Faraji, Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB process, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 564.

    Article  CAS  Google Scholar 

  5. R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater., 3(2004), No. 8, p. 511.

    Article  CAS  Google Scholar 

  6. R.K. Islamgaliev, O.B. Kulyasova, B. Mingler, M. Zehetbauer, and A. Minkow, Structure and fatigue properties of the Mg alloy AM60 processed by ECAP, Mater. Sci. Forum, 584–586(2008), p. 803.

    Article  Google Scholar 

  7. W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, and K.J. Kurzydlowski, Nanocrystalline titanium produced by hydrostatic extrusion, J. Mater. Process. Technol., 205(2008), No. 1–3, p. 173.

    Article  CAS  Google Scholar 

  8. P. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev., 48(1935), No. 10, p. 825.

    Article  CAS  Google Scholar 

  9. M. Janeček, M. Popov, M.G. Krieger, R.J. Hellmig, and Y. Estrin, Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing, Mater. Sci. Eng. A, 462(2007), No. 1–2, p. 116.

    Article  Google Scholar 

  10. G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP-Conform, Mater. Sci. Eng. A, 382(2004), No. 1–2, p. 30.

    Article  Google Scholar 

  11. H. Utsunomiya, K. Hatsuda, T. Sakai, and Y. Saito, Continuous grain refinement of aluminum strip by conshearing, Mater. Sci. Eng. A, 372(2004), No. 1–2, p. 199.

    Article  Google Scholar 

  12. M. Eskandarzadeh, A. Masoumi, G. Faraji, M. Mohammadpour, and X.S. Yan, A new designed incremental high-pressure torsion process for producing long nanostructured rod samples, J. Alloys Compd., 695(2017), p. 1539.

    Article  Google Scholar 

  13. N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC), Mater. Sci. Eng. A, 528(2011), No. 25–26, p. 7537.

    Article  CAS  Google Scholar 

  14. G. Faraji, F. Samadpour, and P. Babaei, Hydrostatic Cyclic Expansion Extrusion Process For Producing Ultrafine-Grained Rods, U.S. Patent, Appl. 15/725232, 2018.

  15. F. Samadpour, G. Faraji, P. Babaie, S.R. Bewsher, and M. Mohammadpour, Hydrostatic cyclic expansion extrusion (HCEE) as a novel severe plastic deformation process for producing long nanostructured metals, Mater. Sci. Eng. A, 718(2018), p. 412.

    Article  CAS  Google Scholar 

  16. M. Lewandowska and K.J. Kurzydlowski, Recent development in grain refinement by hydrostatic extrusion, J. Mater. Sci., 43(2008), No. 23–24, p. 7299.

    Article  CAS  Google Scholar 

  17. K.Y. Rhee, W.Y. Han, H.J. Park, and S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng. A, 384(2004), No. 1–2, p. 70.

    Article  Google Scholar 

  18. N. Stanford and M.R. Barnett, Solute strengthening of prismatic slip, basal slip and \(\left\{{10\overline 1 2} \right\}\) twinning in Mg and Mg-Zn binary alloys, Int. J. Plast., 47(2013), p. 165.

    Article  CAS  Google Scholar 

  19. G. Faraji, M.M. Mashhadi, K. Abrinia and H.S. Kim, Deformation behavior in the tubular channel angular pressing (TCAP) as a noble SPD method for cylindrical tubes, Appl. Phys. A, 107(2012), No. 4, p. 819.

    Article  CAS  Google Scholar 

  20. G. Faraji, M.M. Mashhadi, S.H. Joo, and H.S. Kim, The role of friction in tubular channel angular pressing, Rev. Adv. Mater. Sci, 31(2012), No. 1, p. 12.

    CAS  Google Scholar 

  21. Q. Chen, Z.D. Zhao, G. Chen, and B. Wang, Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy, J. Alloys Compd., 632(2015), p. 190.

    Article  CAS  Google Scholar 

  22. G. Faraji, M.M. Mashhadi, and H.S. Kim, Microstructure inhomogeneity in ultra-fine-grained bulk AZ91 produced by accumulative back extrusion (ABE), Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4312.

    Article  Google Scholar 

  23. S. Amani, G. Faraji, and K. Abrinia, Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE), J. Manuf. Processes, 28(2017), p. 197.

    Article  Google Scholar 

  24. E.D. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B, 64(1951), No. 9, p. 747.

    Article  Google Scholar 

  25. A. Yamashita, Z. Horita, and T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A, 300(2001), No. 1–2, p. 142.

    Article  Google Scholar 

  26. O. Kulyasova, R. Islamgaliev, B. Mingler, and M. Zehetbauer, Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing, Mater. Sci. Eng. A, 503(2009), No. 1–2, p. 176.

    Article  Google Scholar 

  27. S.M. Masoudpanah and R. Mahmudi, The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing, Mater. Des., 31(2010), No. 7, p. 3512.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Iran National Science Foundation (No. 96000854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadpour, F., Faraji, G. & Siahsarani, A. Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method. Int J Miner Metall Mater 27, 669–677 (2020). https://doi.org/10.1007/s12613-019-1921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1921-7

Keywords

Navigation