Skip to main content
Log in

Studies on the clinical symptoms, virus distribution, and mRNA expression of several antiviral immunity-related genes in grass carp after infection with genotype II grass carp reovirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The viral hemorrhage disease caused by grass carp reovirus (GCRV) is a serious contagious disease of grass carp that mainly infects fingerlings and yearlings. Epidemiological studies have shown that GCRV genotype II is currently the prominent genotype. However, little is known about the histopathological characteristics, virus distribution, and expression of immunity-related genes in grass carp infected by GCRV genotype II. In this study, we found that grass carp infected by GCRV genotype II lost appetite, swam alone, and rolled, and their fins, eyes, operculum, oral cavity, abdomen, intestine, and muscles showed pronounced punctate hemorrhage. Congestion, swelling, deformation, thinning of membranes, dilatation and darkened color of nucleoli, cathepsis, erythrocyte infiltration, and vacuole formation were observed in some infected tissues. A qRT-PCR test showed that the 11 genome segments of GCRV had similar expression patterns in different tissues. The S8 segment, with unknown function and no homologous sequences, had the highest expression level, while the most conserved segment, L2, had the lowest expression level. GCRV particles were distributed in different tissues, especially in the intestine. In the infected intestine, the expression of various receptors and adaptor molecules was modulated at different levels. Pro-inflammatory cytokine interleukin-1β (IL-1β) expression was 2160.9 times higher than that in the control group. The upregulation of immunity-related genes activated the antiviral immunity pathways. Therefore, the intestine might play a dual role in mediating GCRV infection and the antiviral immune response. This study provides detailed information about the pathogenicity of GCRV and expression of immunity-related genes, laying the foundation for further research on virus control and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fang Q, Shah S, Liang YY, Zhou HZ (2005) 3D reconstruction and capsid protein characterization of grass carp reovirus. Sci China Ser C: Life Sci 48(6):593–600

    Article  CAS  Google Scholar 

  2. Wang Q, Zeng WW, Liu C, Zhang C, Wang YY, Shi CB, Wu SQ (2012) Complete genome sequence of a reovirus isolated from grass carp, indicating different genotypes of GCRV in China. J Virol 86(22):12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang YF, Zeng WW, Wang YY, Wang Q, Yin JY, Li YY, Wang CB, Bergmann SM, Gao CX, Hu HZ (2020) Comparison of the blood parameters and histopathology between grass carp infected with a virulent and avirulent isolates of genotype II grass carp reovirus. Microb Pathog 139:103859

    Article  CAS  PubMed  Google Scholar 

  4. Wang T, Li JL, Lu LQ (2013) Quantitative in vivo and in vitro characterization of co-infection by two genetically distant grass carp reoviruses. J Gen Virol 94:1301–1309

    Article  CAS  PubMed  Google Scholar 

  5. Wu ML, Cui K, Li HY, He JX, Chen HL, Jiang YY, Ren J (2016) Genomic characterization and evolution analysis of a mutant reovirus isolated from grass carp in Anhui. Arch Virol 161(5):1385–1387

    Article  CAS  PubMed  Google Scholar 

  6. Pei C, Ke F, Chen ZY, Zhang QY (2014) Complete genome sequence and comparative analysis of grass carp reovirus strain 109 (GCReV-109) with other grass carp reovirus strains reveals no significant correlation with regional distribution. Arch Virol 159(9):2435–2440

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Wang Q, Shi CB, Zeng WW, Liu YK, Wu SQ (2010) Molecular analysis of grass carp reovirus HZ08 genome segments 1-3 and 5-6. Virus Genes 41:102–104

    Article  CAS  PubMed  Google Scholar 

  8. Wu H, Zhang YY, Lu XY, Xiao J, Feng PH, Hao F (2019) STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV. Fish Shellfish Immunol 87:386–394

    Article  CAS  PubMed  Google Scholar 

  9. Su JG, Zhu ZY, Wang YP, Zou J, Wang N, Jang SH (2009) Grass carp reovirus activates RNAi pathway in rare minnow. Gobiocypris rarus. Aquaculture 289(1–2):1–5

    CAS  Google Scholar 

  10. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  11. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  PubMed  Google Scholar 

  12. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826

    Article  CAS  PubMed  Google Scholar 

  13. Beutler BA (2009) TLRs and innate immunity. Blood 113(7):1399–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li S, Lu LF, Wang ZX, Chen DD, Zhang YA (2016) Fish IRF6 is a positive regulator of IFN expression and involved in both of the MyD88 and TBK1 pathways. Fish Shellfish Immunol 57:262–268

    Article  CAS  PubMed  Google Scholar 

  15. Fernández-Trujillo MA, Novel P, Manchado M, Sepulcre MP, Mulero V, Borrego JJ, Álvarez MC, Béjar J (2011) Three Mx genes with differential response to VNNV infection have been identified in gilthead seabream (Sparus aurata). Mol Immunol 48(9–10):1216–1223

    Article  PubMed  CAS  Google Scholar 

  16. Rao YL, Su JG, Yang CR, Peng LM, Feng XL, Li QM (2013) Characterizations of two grass carp Ctenopharyngodon idella HMGB2 genes and potential roles in innate immunity. Dev Comp Immunol 41(2):164–177

    Article  CAS  PubMed  Google Scholar 

  17. Rao YL, Su JG (2015) Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015:670437

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tafalla C, Saint-Jean SR, Pérez-Prieto S (2006) Immunological consequences of the coinfection of brown trout (Salmo trutta) with infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV). Aquaculture 256:15–22

    Article  Google Scholar 

  19. Zhang XS, Xu XY, Shen YB, Fang Y, Zhang Jh, Bai YL, Gu ST, Wang RQ, Chen TS, Li JL (2019) Myeloid differentiation factor 88 (Myd88) is involved in the innate immunity of black carp (Mylopharyngodon piceus) defense against pathogen infection. Fish Shellfish Immunol 94:220–229

    Article  CAS  PubMed  Google Scholar 

  20. Pasare C, Medzhitov R (2004) Toll-like receptors and acquired immunity. Semin Immunol 16:23–26

    Article  CAS  PubMed  Google Scholar 

  21. Lin YF, He J, Zeng RY, Li ZM, Luo ZY, Pan WQ, Weng SP, Guo CJ, He JG (2019) Deletion of the infectious spleen and kidney necrosis virus ORF069L reduces virulence to Mandarin fish Siniperca chuatsi. Fish Shellfish Immunol 95:328–335

    Article  CAS  PubMed  Google Scholar 

  22. Guo CJ, He J, He JG (2019) The immune evasion strategies of fish viruses. Fish Shellfish Immunol 86:772–784

    Article  CAS  PubMed  Google Scholar 

  23. Wang B, Du HH, Huang HQ, Xian JA, Xia ZH, Hu YH (2019) Major histocompatibility complex class I (MHC Iα) of Japanese flounder (Paralichthys olivaceus) plays a critical role in defense against intracellular pathogen infection. Fish Shellfish Immunol 94:122–131

    Article  CAS  PubMed  Google Scholar 

  24. Su JG, Zhang RF, Dong J, Yang CR (2011) Evaluation of internal control genes for qRT-PCR normalization in tissues and cell culture for antiviral studies of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 30(3):830–835

    Article  CAS  PubMed  Google Scholar 

  25. Liang B, Su JG (2019) Inducible nitric oxide synthase (iNOS) mediates vascular endothelial cell apoptosis in grass carp reovirus (GCRV)-induced hemorrhage. Int J Mol Sci 20(24):6335

    Article  PubMed Central  Google Scholar 

  26. Attoui H, Becnel J, Belaganahalli S, Bergoin M, Brussaard CP, Chappell JD, Ciarlet M, del Vas M, Dermody TS, Dormitzer PR, Duncan R, Fang Q, Graham R, Guglielmi KM, Harding RM, Hillman B, Makkay A, Marzachi AC, Matthijnssens J, Mertens PPC, Milne RG, Mohd Jaafar F, Mori H, Noordeloos AA, Omura T, Patton JT, Rao S, Maan M, Stoltz D, Suzuki N, Upadhyaya NM, Wei C, Zhou H (2012) Part II-the double stranded RNA viruses. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Family Reoviridae. Elsevier Academic Press, San Diego, pp 541–637

    Google Scholar 

  27. Ng KKS, Arnold JJ, Cameron CE (2008) Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 320:137–156

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML (2004) Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Virus Res 101(1):15–28

    Article  CAS  PubMed  Google Scholar 

  29. Owens RJ, Limn C, Roy P (2004) Role of an arbovirus nonstructural protein in cellular pathogenesis and virus release. J Virol 78(12):6649–6656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parker JS, Broering TJ, Kim J, Higgins DE, Nibert ML (2002) Reovirus core protein μ2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 76(9):4483–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang FX, Guo H, Zhang J, Yan LM, Chen QX, Yan SC, Fang Q (2015) VP5 autocleavage is required for efficient infection by in vitro recoated aquareovirus particles. J Gen Virol 96(7):1795–1800

    Article  PubMed  CAS  Google Scholar 

  32. Chen QX, Guo H, Zhang FX, Fang Q (2018) N-terminal myristoylated VP5 is required for penetrating cell membrane and promoting infectivity in Aquareoviruses. Virol Sin 33:287–290

    Article  PubMed  PubMed Central  Google Scholar 

  33. Odegard AL, Chandran K, Zhang X, Parker JS, Baker TS, Nibert ML (2004) Putative autocleavage of outer capsid protein μ1, allowing release of myristoylated peptide μ1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78(16):8732–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC (2002) Structure of the reovirus membrane-penetration protein, μ1, in a complex with its protector protein, σ3. Cell 108(2):283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275(5304):1320–1323

    Article  CAS  PubMed  Google Scholar 

  36. Gomatos PJ, Prakash O, Stamatos NM (1981) Small reovirus particles composed solely of sigma NS with specificity for binding different nucleic acids. J Virol 39(1):115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Key T, Read J, Nibert ML, Duncan R (2013) Piscine reovirus encodes a cytotoxic, non-fusogenic, integral membrane protein and previously unrecognized virion outer-capsid proteins. J Gen Virol 94:1039–1050

    Article  CAS  PubMed  Google Scholar 

  38. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aoki T, Hikima JI, Hwang SD, Jung TS (2013) Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. Fish Shellfish Immunol 35(6):1689–1702

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  41. Yanai H, Ban T, Taniguchi T (2012) High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol 33(12):633–640

    Article  CAS  PubMed  Google Scholar 

  42. Bianchi ME, Celona B (2010) Ancient news: HMGBs are universal sentinels. J Mol Cell Biol 2(3):116–117

    Article  CAS  PubMed  Google Scholar 

  43. Goubau D, Deddouche S, Reis e Sousa C (2013) Cytosolic Sensing of Viruses. Immun 38(5):855–869

    Article  CAS  Google Scholar 

  44. Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35(12):1263–1272

    Article  CAS  PubMed  Google Scholar 

  45. Verrier ER, Langevin C, Benmansour A, Boudinot P (2011) Early antiviral response and virus-induced genes in fish. Dev Comp Immunol 35(12):1204–1214

    Article  CAS  PubMed  Google Scholar 

  46. Yang CR, Chen LJ, Su JG, Feng XL, Rao YL (2013) Two novel homologs of high mobility group box 3 gene in grass carp (Ctenopharyngodon idella): potential roles in innate immune responses. Fish Shellfish Immunol 35(5):1501–1510

    Article  CAS  PubMed  Google Scholar 

  47. Yang CR, Peng LM, Su JG (2013) Two HMGB1 genes from grass carp Ctenopharyngodon idella mediate immune responses to viral/bacterial PAMPs and GCRV challenge. Dev Comp Immunol 39(3):133–146

    Article  CAS  PubMed  Google Scholar 

  48. Yang CR, Su JG, Huang T, Zhang RF, Peng LM (2011) Identifcation of a retinoic acid-inducible gene I from grass carp (Ctenopharyngodon idella) and expression analysis in vivo and in vitro. Fish Shellfish Immunol 30(3):936–943

    Article  CAS  PubMed  Google Scholar 

  49. Dinarello CA (1988) Interleukin-1. Adv Pharmacol 6(1):51–95

    Google Scholar 

  50. Puhlmann M, Weinreich DM, Farma JM, Carroll NM, Turner EM, Alexander HR Jr (2005) Interleukin-1β induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med 3:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Dinarello CA (2010) How interleukin-1β induces gouty arthritis. Arthritis Rheum 62(11):3140–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hakanpaa L, Kiss EA, Jacquemet G, Miinalainen I, Lerche M, Guzmán C, Mervaalad E, Eklunde L, Ivaskab J, Saharinen P (2018) Targeting β1-integrin inhibits vascular leakage in endotoxemia. Proc Natl Acad Sci USA 115(28):E6467–E6476

    Article  CAS  PubMed  Google Scholar 

  53. Shui YM, Lu SY, Guo X, Liu XL, Fu BQ, Hu P, Qu LL, Liu NN, Li YS, Wang LL, Zhai FF, Ju DD, Liu ZS, Zhou Y, Ren HL (2018) Molecular characterization and differential expression analysis of interleukin 1β from Ovis aries. Microb Pathog 116:180–188

    Article  CAS  PubMed  Google Scholar 

  54. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286(5447):2156–2159

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the China Agriculture Research System (CARS-46, 45)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglin Wu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All experiments were performed according to the Experimental Animal Management Law of China and were approved by the Animal Ethics Committee of Anhui Academy of Agricultural Sciences.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Li, H., Chen, X. et al. Studies on the clinical symptoms, virus distribution, and mRNA expression of several antiviral immunity-related genes in grass carp after infection with genotype II grass carp reovirus. Arch Virol 165, 1599–1609 (2020). https://doi.org/10.1007/s00705-020-04654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04654-y

Navigation