Skip to main content
Log in

Global Small Solutions of Heat Conductive Compressible Navier–Stokes Equations with Vacuum: Smallness on Scaling Invariant Quantity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the Cauchy problem to the heat conductive compressible Navier–Stokes equations in the presence a of vacuum and with a vacuum far field. Global well-posedness of strong solutions is established under the assumption, among some other regularity and compatibility conditions: that the scaling invariant quantity \(\Vert \rho _0\Vert _\infty (\Vert \rho _0\Vert _3+\Vert \rho _0\Vert _\infty ^2\Vert \sqrt{\rho _0}u_0\Vert _2^2)(\Vert \nabla u_0\Vert _2^2+ \Vert \rho _0\Vert _\infty \Vert \sqrt{\rho _0}E_0\Vert _2^2)\) is sufficiently small, with the smallness depending only on the parameters \(R, \gamma , \mu , \lambda ,\) and \(\kappa \) in the system. Notably, the smallness assumption is imposed on the above scaling invariant quantity exclusively, and it is independent of any norms of the initial data, which is different from the existing papers. The total mass can be either finite or infinite. An equation for the density-more precisely for its cubic, derived from combining the continuity and momentum equations-is employed to get the \(L^\infty _t(L^3)\) type estimate of the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bresch, D., Jabin, P.E.: Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. Math. 188, 577–684, 2018

    MathSciNet  MATH  Google Scholar 

  2. Chen, G.-Q., Hoff, D., Trivisa, K.: Global solutions of the compressible Navier–Stokes equations with large discontinuous initial data. Commun. Partial Differ. Equ. 25, 2233–2257, 2000

    MathSciNet  MATH  Google Scholar 

  3. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224, 2010

    MathSciNet  MATH  Google Scholar 

  4. Chikami, N., Danchin, R.: On the well-posedness of the full compressible Naiver–Stokes system in critical Besov spaces. J. Differ. Equ. 258, 3435–3467, 2015

    ADS  MATH  Google Scholar 

  5. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275, 2004

    MathSciNet  MATH  Google Scholar 

  6. Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129, 2006

    MathSciNet  MATH  Google Scholar 

  7. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411, 2006

    ADS  MathSciNet  MATH  Google Scholar 

  8. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39, 2001

    MathSciNet  MATH  Google Scholar 

  9. Danchin, R., Xu, J.: Optimal decay estimates in the critical Lp framework for flows of compressible viscous and heat-conductive gases. J. Math. Fluid Mech. 20, 1641–1665, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  10. Deckelnick, K.: Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math. Z. 209, 115–130, 1992

    MathSciNet  MATH  Google Scholar 

  11. Fang, D., Zhang, T., Zi, R.: Global solutions to the isentropic compressible Navier–Stokes equations with a class of large initial data. SIAM J. Math. Anal. 50, 4983–5026, 2018

    MathSciNet  MATH  Google Scholar 

  12. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392, 2001

    ADS  MathSciNet  MATH  Google Scholar 

  13. Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1705–1738, 2004

    MathSciNet  MATH  Google Scholar 

  14. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford 2004

    Google Scholar 

  15. Graffi, D.: Il teorema di unicitá nella dinamica dei fluidi compressibili (Italian). J. Ration. Mech. Anal. 2, 99–106, 1953

    MATH  Google Scholar 

  16. Hoff, D.: Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids. Arch. Ration. Mech. Anal. 139, 303–354, 1997

    MathSciNet  MATH  Google Scholar 

  17. Huang, X., Li, J.: Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier–Stokes and magnetohydrodynamic flows. Commun. Math. Phys. 324, 147–171, 2013

    ADS  MathSciNet  MATH  Google Scholar 

  18. Huang, X., Li, J.: Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations. Arch. Ration. Mech. Anal. 227, 995–1059, 2018

    MathSciNet  MATH  Google Scholar 

  19. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier–Stokes equations. Commun. Pure Appl. Math. 65, 549–585, 2012

    MathSciNet  MATH  Google Scholar 

  20. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120, 1971

    MathSciNet  MATH  Google Scholar 

  21. Jiang, S., Zhang, P.: Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids. J. Math. Pures Appl. 82, 949–973, 2003

    MathSciNet  MATH  Google Scholar 

  22. Jiang, S., Zlotnik, A.: Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data. Proc. R. Soc. Edinb. Sect. A134, 939–960, 2004

    MathSciNet  MATH  Google Scholar 

  23. Kanel, J.I.: A model system of equations for the one-dimensional motion of a gas. Differ. Uravn. 4, 721–734, 1968. (in Russian)

    MathSciNet  Google Scholar 

  24. Kazhikhov, A.V.: Cauchy problem for viscous gas equations. Sib. Math. J. 23, 44–49, 1982

    MathSciNet  MATH  Google Scholar 

  25. Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282, 1977

    MathSciNet  Google Scholar 

  26. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \({\mathbb{R}}^3\). Commun. Math. Phys. 200, 621–659, 1999

    ADS  MATH  Google Scholar 

  27. Li, J.: Global well-posedness of the one-dimensional compressible Navier–Stokes equations with constant heat conductivity and nonnegative density. SIAM J. Math. Anal. 51, 3666–3693, 2019

    MathSciNet  MATH  Google Scholar 

  28. Li, J.: Global well-posedness of non-heat conductive compressible Navier–Stokes equations in 1D. Nonlinearity33, 2181–2210, 2020

    ADS  Google Scholar 

  29. Li, J., Liang, Z.: Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier–Stokes system in unbounded domains with large data. Arch. Ration. Mech. Anal. 220, 1195–1208, 2016

    MathSciNet  MATH  Google Scholar 

  30. Li, J., Xin, Z.: Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier–Stokes equations with vacuum. Ann. PDE5, 7, 2019

    MathSciNet  MATH  Google Scholar 

  31. Li, J., Xin, Z.: Entropy bounded solutions to the one-dimensional compressible Navier–Stokes equations with zero heat conduction and far field vacuum. Adv. Math. 361, 106923, 2020

    MathSciNet  MATH  Google Scholar 

  32. Li, J., Xin, Z.: Entropy-bounded solutions to the heat conductive compressible Navier–Stokes equations. arXiv:2002.03372v1 [math.AP]

  33. Li, J., Xin, Z.: Entropy-bounded solutions to the multi-dimensional heat conductive compressible Navier–Stokes equations (in preparation)

  34. Lions, P.L.: Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques. Comptes Rendus Acad. Sci. Paris Sér. I Math. 316, 1335–1340, 1993

    MathSciNet  MATH  Google Scholar 

  35. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 2. Clarendon, Oxford 1998

    MATH  Google Scholar 

  36. Lukaszewicz, G.: An existence theorem for compressible viscous and heat conducting fluids. Math. Methods Appl. Sci. 6, 234–247, 1984

    ADS  MathSciNet  MATH  Google Scholar 

  37. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104, 1980

    MathSciNet  MATH  Google Scholar 

  38. Matsumura, A., Nishida, T.: The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid. Preprint University of Wisconsin, MRC Technical Summary Report no. 2237 (1981)

  39. Matsumura, A., Nishida, T.: Initial-Boundary Value Problems for the Equations of Motion of General Fluids. Computing Methods in Applied Sciences and Engineering, V (Versailles, 1981), pp. 389–406. North-Holland, Amsterdam 1982

    Google Scholar 

  40. Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464, 1983

    ADS  MathSciNet  MATH  Google Scholar 

  41. Nash, J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. Fr. 90, 487–497, 1962

    MATH  Google Scholar 

  42. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418, 1985

    MathSciNet  MATH  Google Scholar 

  43. Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal. 3, 271–288, 1959

    MathSciNet  MATH  Google Scholar 

  44. Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. 13, 193–253, 1977

    MATH  Google Scholar 

  45. Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. 130, 197–213, 1982

    MathSciNet  MATH  Google Scholar 

  46. Valli, A., Zajaczkowski, W.M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296, 1986

    ADS  MathSciNet  MATH  Google Scholar 

  47. Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb16, 517–544, 1972 [previously in Mat. Sb. (N.S.) 87, 504–528 1972 (in Russian)]

  48. Wen, H., Zhu, C.: Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data. SIAM J. Math. Anal. 49, 162–221, 2017

    MathSciNet  MATH  Google Scholar 

  49. Zlotnik, A.A., Amosov, A.A.: On stability of generalized solutions to the equations of one-dimensional motion of a viscous heat-conducting gas. Sib. Math. J. 38, 663–684, 1997

    MathSciNet  MATH  Google Scholar 

  50. Zlotnik, A.A., Amosov, A.A.: Stability of generalized solutions to equations of one-dimensional motion of viscous heat conducting gases. Math. Notes63, 736–746, 1998

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for the kind suggestions that improved this paper. This work was supported in part by the National Natural Science Foundation of China Grants 11971009, 11871005, and 11771156, by the Natural Science Foundation of Guangdong Province Grant 2019A1515011621, by the South China Normal University start-up Grant 550-8S0315, and by the Hong Kong RGC Grant CUHK 14302917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkai Li.

Additional information

Communicated by P.-L. Lions

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Global Small Solutions of Heat Conductive Compressible Navier–Stokes Equations with Vacuum: Smallness on Scaling Invariant Quantity. Arch Rational Mech Anal 237, 899–919 (2020). https://doi.org/10.1007/s00205-020-01521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01521-7

Navigation