Skip to main content

Advertisement

Log in

Biogas from Tannery Solid Waste Anaerobic Digestion Is Driven by the Association of the Bacterial Order Bacteroidales and Archaeal Family Methanosaetaceae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The search for renewable energies has been one of the biggest challenges of the last decades. Sludge and solid wastes of many sources have been used to produce biogas of high calorific value. Thus, this work aimed to evaluate the biogas production of solid waste originating from a tannery that uses chromium salts as a tanning agent and to characterize the physicochemical parameters and microbial composition of the biogas-producing biomass. Wastes were collected and the parameters were evaluated at the initial and final time points of the anaerobic incubation process. At the end of 150 days, there was a production of 26.1 mL g−1 VSS of biogas with 52% of methane. The highest amount of biomethane observed was related to the archaeal family Methanosaetaceae and bacterial order Bacteroidales. Knowledge about changes in the microbial composition can provide tools for manipulation, isolation, and inoculation of the microorganisms inside the bioreactors to maximize methane production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Narihiro, T., & Sekiguchi, Y. (2007). Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Current Opinion in Biotechnology, 18(3), 273–278. https://doi.org/10.1016/j.copbio.2007.04.003.

    Article  PubMed  CAS  Google Scholar 

  2. Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: current status and perspectives. Biotechnology Advances, 36(2), 452–466.

    Article  CAS  Google Scholar 

  3. Croce, S., Wei, Q., Imporzano, G. D., Dong, R., & Adani, F. (2016). Anaerobic digestion of straw and corn Stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnology Advances, 34(8), 1289–1304. https://doi.org/10.1016/j.biotechadv.2016.09.004.

    Article  PubMed  CAS  Google Scholar 

  4. Mannucci, A., Munz, G., Mori, G., & Lubello, C. (2010). Anaerobic treatment of vegetable tannery wastewaters: a review. Desalination., 264(1-2), 1–8. https://doi.org/10.1016/j.desal.2010.07.021.

    Article  CAS  Google Scholar 

  5. Piccin, J. S., Gomes, C. S., Mella, B., & Gutterres, M. (2016). Color removal from real leather dyeing effluent using tannery waste as an adsorbent. Journal of Environmental Chemical Engineering, 4(1), 1061–1067. https://doi.org/10.1016/j.jece.2016.01.010.

    Article  CAS  Google Scholar 

  6. Mella, B., Glanert, A. C., & Gutterres, M. (2016). Removal of chromium from tanning wastewater by chemical precipitation and electrocoagulation. Journal of the Society of Leather Technologists and Chemists, 100, 55–61.

    CAS  Google Scholar 

  7. Mella, B., Glanert, A. C., & Gutterres, M. (2015). Removal of chromium from tanning wastewater and its reuse. Process Safety and Environment Protection, 95, 195–201. https://doi.org/10.1016/j.psep.2015.03.007.

    Article  CAS  Google Scholar 

  8. Pandit, P., Gulhane, M., Khardenavis, A., & Vaidya, A. Technological advances for treating municipal waste in microbial factories: biofuels, waste treatment: Volume 1, 978–81–322-2597-3. https://doi.org/10.1007/978-81-322-2598-0_13

  9. Agustini, C. B., Spier, F., da Costa, M., & Gutterres, M. (2018). Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resources, Conservation and Recycling, 130, 51–59. https://doi.org/10.1016/j.resconrec.2017.11.018.

    Article  Google Scholar 

  10. Yu, D., Kurola, J. M., Lähde, K., Kymäläinen, M., Sinkkonen, A., & Romantschuk, M. (2014). Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. Journal of Environmental Management, 143, 54–60.

    Article  CAS  Google Scholar 

  11. Granada, C. E., Hasan, C., Marder, M., Konrad, O., Vargas, L. K., Passaglia, L. M. P., Giongo, A., De Oliveira, R. R., Pereira, L. D. M., De Jesus, F., & Sperotto, R. A. (2018). Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae. Renewable Energy, 118, 840–846. https://doi.org/10.1016/j.renene.2017.11.077.

    Article  CAS  Google Scholar 

  12. Bates, S. T., Berg-lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 5(5), 908–917. https://doi.org/10.1038/ismej.2010.171.

    Article  PubMed  CAS  Google Scholar 

  13. Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics., 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–1000. https://doi.org/10.1038/nmeth.2604.

    Article  PubMed  CAS  Google Scholar 

  15. Cole, J. R., Wang, Q., Fish, J. A., Chai, B., Mcgarrell, D. M., Sun, Y., Brown, C. T., Porras-alfaro, A., Kuske, C. R., & Tiedje, J. M. (2014). Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(D1), 633–642. https://doi.org/10.1093/nar/gkt1244.

    Article  CAS  Google Scholar 

  16. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Jeremy, E., Ley, R. E., Lozupone, C. A., Mcdonald, D., Muegge, B. D., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303.QIIME.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Desantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069–5072. https://doi.org/10.1128/AEM.03006-05.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dewil, R., Appels, L., Baeyens, J., & Degrève, J. (2007). Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. Journal of Hazardous Materials, 146(3), 577–581. https://doi.org/10.1016/j.jhazmat.2007.04.059.

    Article  PubMed  CAS  Google Scholar 

  19. Puyol, D., Monsalvo, V. M., Mohedano, A. F., Sanz, J. L., & Rodriguez, J. J. (2011). Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, 185(2-3), 1059–1065. https://doi.org/10.1016/j.jhazmat.2010.10.014.

    Article  PubMed  CAS  Google Scholar 

  20. Gutterres, M., & Mella, B. (2015). Chromium in tannery wastewater. In S. Sharma (Ed.), Heavy Metals In Water: Presence, Removal and Safety (pp. 315–344). London: Springer

  21. Agustini, C., Jasper, A. L., Costa, M., & Guterres, M. (2017). Lack of inhibitory effect of chromium on anaerobic co-digestion of tannery solid wastes. Journal of the Society of Leather Technologists and Chemists, 101(6), 303–307.

  22. Priebe, G. P. S., Kipper, E., Gusmão, A. L., Marcilio, N. R., & Gutterres, M. (2016). Anaerobic digestion of chrome-tanned leather waste for biogas production. Journal of Cleaner Production, 129, 410–416. https://doi.org/10.1016/j.jclepro.2016.04.038.

    Article  CAS  Google Scholar 

  23. Kameswari, K. S. B., Kalyanaraman, C., Porselvam, S., & Thanasekaran, K. (2011). Enhancement of biogas generation by addition of lipase in the co-digestion of tannery solid wastes. Clean: Soil, Air, Water, 39, 781–786. https://doi.org/10.1002/clen.201000408.

    Article  CAS  Google Scholar 

  24. Thangamani, A., Rajakumar, S., & Ramanujam, R. A. (2010). Anaerobic co-digestion of hazardous tannery solid waste and primary sludge: biodegradation kinetics and metabolite analysis. Clean Technologies and Environmental Policy, 12(5), 517–524. https://doi.org/10.1007/s10098-009-0256-x.

    Article  CAS  Google Scholar 

  25. Zupančič, G. D., & Jemec, A. (2010). Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes. Bioresource Technology, 101(1), 26–33. https://doi.org/10.1016/j.biortech.2009.07.028.

    Article  PubMed  CAS  Google Scholar 

  26. Mella, B., Puchana-rosero, M. J., Costa, D. E. S., & Gutterres, M. (2017). Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. Journal of Molecular Liquids, 242, 137–145. https://doi.org/10.1016/j.molliq.2017.06.131.

    Article  CAS  Google Scholar 

  27. Kampmann, K., Ratering, S., Kramer, I., Schmidt, M., Zerr, W., & Schnell, S. (2012). Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Applied and Environmental Microbiology, 78(7), 2106–2119. https://doi.org/10.1128/AEM.06394-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Scherr, K. E., Lundaa, T., Klose, V., Bochmann, G., & Loibner, A. P. (2012). Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. Journal of Biotechnology, 157(4), 564–572. https://doi.org/10.1016/j.jbiotec.2011.09.003.

    Article  PubMed  CAS  Google Scholar 

  29. Chen, S., Cheng, H., Liu, J., Hazen, T. C., Huang, V., & He, Q. (2017). Unexpected competitiveness of Methanosaeta populations at elevated acetate concentrations in methanogenic treatment of animal wastewater. Applied Microbiology and Biotechnology, 101(4), 1729–1738. https://doi.org/10.1007/s00253-016-7967-9.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, H., Zhang, C., Rao, Y., Jing, Y., Luo, G., & Zhang, S. (2017). Methane potentials of wastewater generated from hydrothermal liquefaction of rice straw: focusing on the wastewater characteristics and microbial community compositions. Biotechnology for Biofuels, 10, 140–107. https://doi.org/10.1016/j.watres.2016.09.052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gulhane, M., Pandit, P., Khardenavis, A., Singh, D., & Purohit, H. (2017). Study of microbial community plasticity for anaerobic digestion of vegetable waste in anaerobic baffled reactor. Renewable Energy, 101, 59–66. https://doi.org/10.1016/j.renene.2016.08.021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Borges Agustini.

Ethics declarations

Conflict of Interest

Caroline Borges Agustini declares that she has no conflict of interest. Marisa da Costa declares that she has no conflict of interest. Mariliz Gutterres declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Anaerobic digestion of tannery solid waste results in a high calorific biogas value.

• Microbiota changes throughout process of the incubation period of the anaerobic digestion.

• Physicochemical parameters such TOC influence the composition of the microbial community after the anaerobic digestion.

• Bacterial order Bacteroidales and archaeal family Methanosaetaceae are related with high calorific value biogas production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agustini, C.B., da Costa, M. & Gutterres, M. Biogas from Tannery Solid Waste Anaerobic Digestion Is Driven by the Association of the Bacterial Order Bacteroidales and Archaeal Family Methanosaetaceae. Appl Biochem Biotechnol 192, 482–493 (2020). https://doi.org/10.1007/s12010-020-03326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03326-6

Keywords

Navigation