Skip to main content
Log in

Design and implementation of a current controlled grid connected inverter for thermoelectric generator sources

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This paper presents the digital implementation of a current controlled grid connected inverter for Thermoelectric Generator (TEG) sources. Considering the electrical characteristics of a TEG source, several important aspects that a designer has to consider in selecting the rating of power converters for the grid connected operation of TEG source are discussed. The closed loop control of a TEG fed grid connected voltage source inverter (VSI) requires line current control to regulate the power pumped into the grid. Considering the inverter, current sensor and line inductor models, a simplified method is espoused to determine the parameters of the digital current controller. An Altera Cyclone II FPGA board is used to implement the current control strategy in VSI fed with TEG power source. The proposed design approach is validated using simulations and experiments and verified with the time domain specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Risseh A E, Nee H P and Goupil C 2018 Electrical power conditioning system for thermoelectric waste heat recovery in commercial vehicles. IEEE Trans. Transp. Electrif. 4(2): 548–562

    Article  Google Scholar 

  2. Hussain Q E, Brigham D R and Maranville C W 2009 Thermoelectric exhaust heat recovery for hybrid vehicles. SAE Int. J. Engines. 2(1): 1132–1142

    Article  Google Scholar 

  3. Min G and Rowe D M 2007 Conversion efficiency of thermoelectric combustion systems. IEEE Trans. Energy Convers. 22(2): 528–534

    Article  Google Scholar 

  4. Bond M and Park J 2015 Current-sensorless power estimation and MPPT implementation for thermoelectric generators. IEEE Trans. Ind. Electron. 62(9): 5539–5548

    Article  Google Scholar 

  5. Montecucco A and Knox A R 2015 Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators. IEEE Trans. Power Electron. 30(2): 828–839

    Article  Google Scholar 

  6. Carreon-Bautista S, Eladawy A, Mohieldin A N and Sánchez-Sinencio E 2014 Boost converter with dynamic input impedance matching for energy harvesting with multi-array thermoelectric generators. IEEE Trans. Ind. Electron. 61(10): 5345–5353

    Article  Google Scholar 

  7. Kim J and Kim C 2013 DC–DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications. IEEE Trans. Power Electron. 28(8): 3827–3833

    Article  Google Scholar 

  8. Montecucco A, Siviter J and Knox A R 2014 The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Appl. Energy 123: 47–54

    Article  Google Scholar 

  9. Sun K, Qiu Z, Wu H and Xing Y 2018 Evaluation on high-efficiency thermoelectric generation systems based on differential power processing. IEEE Trans. Ind. Electron. 65(1): 699–708

    Article  Google Scholar 

  10. Choi J and Sul S 1998 Fast current controller in three-phase AC/DC boost converter using d-q axis. IEEE Trans. Power Electron. 13(1): 179–183

    Article  Google Scholar 

  11. Prasad J S, Bhavsar T, Ghosh R and Narayanan G 2008 Vector control of three-phase AC/DC front-end converter. Sadhana 33(5): 591–613

    Article  Google Scholar 

  12. Krishnan R 2001 Electric motor drives: modeling, analysis and control. Prentice Hall

  13. Sato Y, Ishizuka T and Nezu T 1998 A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current. IEEE Trans. Ind. Appl. 34(3): 480–486

    Article  Google Scholar 

  14. Lee T and Liu J 2011 Modeling and control of a three-phase four-switch PWM voltage-source rectifier in d–q synchronous frame. IEEE Trans. Power Electron. 26(9): 2476–2489

    Article  Google Scholar 

  15. Cao D and Peng F Z 2011 Multiphase multilevel modular dc–dc converter for high-current high-gain TEG application. IEEE Trans. Ind. Appl. 47(3): 1400–1408

    Article  Google Scholar 

  16. Lineykin S and Ben-Yaakov S 2007 Modeling and analysis of thermoelectric modules. IEEE Trans. Ind. Appl. 43(2): 505–512

    Article  Google Scholar 

  17. Data sheet of Thermoelectric Generator TEG-12708T237

  18. Data sheet of LEM sensor LA-55P

  19. Engelberg S 2005 A mathematical introduction to control theory. Imperial College Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Saravana Ilango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijukumar, B., Ilango, G.S. & Nagamani, C. Design and implementation of a current controlled grid connected inverter for thermoelectric generator sources. Sādhanā 45, 121 (2020). https://doi.org/10.1007/s12046-020-01328-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-020-01328-y

Keywords

Navigation