Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Biofunctional hydrogels based on host–guest interactions

Abstract

Biological systems involve the most complex materials in the world. Mimicking biological systems is not an easy task. Materials researchers are continuing to push themselves to prepare synthetic materials that can replicate biological systems. Hydrogels have attracted great interest from materials researchers for mimicking biological systems due to their biocompatibility. One approach to preparing hydrogels is using host–guest interactions. Host–guest interactions can be achieved by using cyclodextrins (CDs) as host units and suitable guest units. Hydrogels prepared based on host–guest interactions show several functionalities, such as self-healing ability, stimuli responsiveness, the ability to function as soft actuators for use in artificial muscles, and conductive responsiveness. These functions can be attributed to reversible bond formation between the CDs and guest units. Self-healing materials, which mimic the recovery of injured skin, can be achieved if the association constant between the CDs and guests is sufficiently high. Several specific guest units can also show external stimuli responsivity (redox, pH, temperature, and light) when paired with CDs, allowing them to mimic the responsiveness of the human body to external stimuli. Light-responsive hydrogels can be used to prepare soft actuators that can be employed as artificial muscles to mimic the sliding motion of human sarcomeres. Conductive hydrogels will be required to support the function of artificial muscles in the near future. This review summarizes the advancements made in biofunctional hydrogels based on host–guest interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    CAS  Google Scholar 

  2. Koopmans C, Ritter H. Formation of physical hydrogels via host−guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups. Macromolecules. 2008;41:7418–22.

    CAS  Google Scholar 

  3. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, et al. Highly stretchable and tough hydrogels. Nature. 2012;489:133.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Calvert P. Hydrogels for soft machines. Adv Mater. 2008;21:743–56.

    Google Scholar 

  5. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.

    CAS  Google Scholar 

  6. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    CAS  Google Scholar 

  7. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869–80.

    CAS  PubMed  Google Scholar 

  8. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54:3–12.

    CAS  PubMed  Google Scholar 

  9. Choi M, Choi JW, Kim S, Nizamoglu S, Hahn SK, Yun SH. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics. 2013;7:987–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang J, Tok JBH, Bao Z. Self-healing soft electronics. Nat Electron. 2019;2:144–50.

    Google Scholar 

  11. Liu Y, Liu J, Chen S, Lei T, Kim Y, Niu S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019;3:58–68.

    CAS  PubMed  Google Scholar 

  12. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol. 2013;31:553–6.

    CAS  PubMed  Google Scholar 

  13. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    CAS  Google Scholar 

  14. Luo Y, Shoichet MS. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater. 2004;3:249–53.

    CAS  PubMed  Google Scholar 

  15. Wang Q, Yang Z, Zhang X, Xiao X, Chang CK, Xu B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Ed. 2007;46:4285–9.

    CAS  Google Scholar 

  16. Pedersen CJ. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc. 1967;89:2495–6.

    CAS  Google Scholar 

  17. Pedersen CJ. The discovery of crown ethers (Noble Lecture). Angew Chem Int Ed. 1988;27:1021–7.

    Google Scholar 

  18. Haino T. Molecular-recognition-directed formation of supramolecular polymers. Polym J. 2013;45:363–83.

    CAS  Google Scholar 

  19. Fischer E. Einfluss der configuration auf die Wirkung der enzyme. Ber Dtsch Chemischen Ges. 1894;27:2985–93.

    CAS  Google Scholar 

  20. Reutenauer P, Buhler E, Boul PJ, Candau SJ, Lehn J-M. Room temperature dynamic polymers based on Diels–Alder chemistry. Chem Eur J. 2009;15:1893–900.

    CAS  PubMed  Google Scholar 

  21. Ono T, Nobori T, Lehn J-M. Dynamic polymer blends—component recombination between neat dynamic covalent polymers at room temperature. Chem Commun. 2005;1522–4.

  22. Roy N, Bruchmann B, Lehn J-M. DYNAMERS: dynamic polymers as self-healing materials. Chem Soc Rev. 2015;44:3786–807.

    CAS  PubMed  Google Scholar 

  23. Liu Y-L, Chuo T-W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym Chem. 2013;4:2194–205.

    CAS  Google Scholar 

  24. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451:977.

    CAS  PubMed  Google Scholar 

  25. Noro A, Matsushita Y, Lodge TP. Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules. 2009;42:5802–10.

    CAS  Google Scholar 

  26. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science. 1997;278:1601–4.

    CAS  PubMed  Google Scholar 

  27. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π stacking interactions. Chem Commun. 2009;6717–9.

  28. Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, et al. High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc. 2012;134:5362–8.

    CAS  PubMed  Google Scholar 

  29. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature. 2010;463:339.

    CAS  PubMed  Google Scholar 

  30. Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, et al. Optically healable supramolecular polymers. Nature. 2011;472:334.

    CAS  PubMed  Google Scholar 

  31. Chow C-F, Fujii S, Lehn J-M. Metallodynamers: neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. Angew Chem Int Ed. 2007;46:5007–10.

    CAS  Google Scholar 

  32. Li C, Tan J, Guan Z, Zhang Q. A three-armed polymer with tunable self-assembly and self-healing properties based on benzene-1,3,5-tricarboxamide and metal–ligand interactions. Macromol Rapid Commun. 2019;40:1800909.

    Google Scholar 

  33. Tuncaboylu DC, Sari M, Oppermann W, Okay O. Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules. 2011;44:4997–5005.

    CAS  Google Scholar 

  34. Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA. Supramolecular cross-linked networks via host−guest complexation with cucurbit[8]uril. J Am Chem Soc. 2010;132:14251–60.

    CAS  PubMed  Google Scholar 

  35. Appel EA, del Barrio J, Loh XJ, Scherman OA. Supramolecular polymeric hydrogels. Chem Soc Rev. 2012;41:6195–214.

    CAS  PubMed  Google Scholar 

  36. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115:12320–406.

    CAS  PubMed  Google Scholar 

  37. Zheng B, Wang F, Dong S, Huang F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev. 2012;41:1621–36.

    CAS  PubMed  Google Scholar 

  38. Xiao T, Xu L, Zhou L, Sun X-Q, Lin C, Wang L. Dynamic hydrogels mediated by macrocyclic host–guest interactions. J Mater Chem B. 2019;7:1526–40.

    CAS  PubMed  Google Scholar 

  39. Pedersen CJ. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc. 1967;89:7017–36.

    CAS  Google Scholar 

  40. Freeman WA, Mock WL, Shih NY. Cucurbituril. J Am Chem Soc. 1981;103:7367–8.

    CAS  Google Scholar 

  41. Kim J, Jung I-S, Kim S-Y, Lee E, Kang J-K, Sakamoto S, et al. New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc. 2000;122:540–1.

    CAS  Google Scholar 

  42. Day A, Arnold AP, Blanch RJ, Snushall B. Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem. 2001;66:8094–100.

    CAS  PubMed  Google Scholar 

  43. Gutsche CD, Dhawan B, No KH, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc. 1981;103:3782–92.

    CAS  Google Scholar 

  44. Böhmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed. 1995;34:713–45.

    Google Scholar 

  45. Ogoshi T, Yamagishi T-a, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev. 2016;116:7937–8002.

    CAS  PubMed  Google Scholar 

  46. Xue M, Yang Y, Chi X, Zhang Z, Huang F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res. 2012;45:1294–308.

    CAS  PubMed  Google Scholar 

  47. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-a, Nakamoto Y. para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc. 2008;130:5022–3.

    CAS  PubMed  Google Scholar 

  48. Strutt NL, Zhang H, Schneebeli ST, Stoddart JF. Functionalizing pillar[n]arenes. Acc Chem Res. 2014;47:2631–42.

    CAS  PubMed  Google Scholar 

  49. Ogoshi T, Kakuta T, Yamagishi T-a. Applications of pillar[n]arene-based supramolecular assemblies. Angew Chem Int Ed. 2019;58:2197–206.

    CAS  Google Scholar 

  50. Bender ML, Komiyama M. Cyclodextrin chemistry. Berlin: Springer-Verlag; 1978.

    Google Scholar 

  51. Easton CJ, Lincoln SF. Modified cyclodextrins: scaffolds and templates for supramolecular chemistry. London: Imperial College Press; 1999.

    Google Scholar 

  52. Amiel C, Sebille B. New associating polymer systems involving water soluble β-cyclodextrin polymers. J Incl Phenom. 1996;25:61–7.

    CAS  Google Scholar 

  53. Guo X, Wang J, Li L, Pham D-T, Clements P, Lincoln SF, et al. Tailoring polymeric hydrogels through cyclodextrin host–guest complexation. Macromol Rapid Commun. 2010;31:300–4.

    CAS  PubMed  Google Scholar 

  54. Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design—the versatility of cyclodextrin-based host–guest chemistry. Angew Chem Int Ed. 2017;56:8350–69.

    CAS  Google Scholar 

  55. Harada A, Adachi H, Kawaguchi Y, Kamachi M. Recognition of alkyl groups on a polymer chain by cyclodextrins. Macromolecules. 1997;30:5181–2.

    CAS  Google Scholar 

  56. Harada A, Li J, Kamachi M. Molecular recognition: preparation of polyrotaxan and tubular polymer from cyclodextrin. Polym Adv Technol. 1997;8:241–9.

    CAS  Google Scholar 

  57. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Macroscopic self-assembly through molecular recognition. Nat Chem. 2011;3:34–7.

    CAS  PubMed  Google Scholar 

  58. Tan S, Ladewig K, Fu Q, Blencowe A, Qiao GG. Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun. 2014;35:1166–84.

    CAS  PubMed  Google Scholar 

  59. Wenz G, Han B-H, Müller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev. 2006;106:782–817.

    CAS  PubMed  Google Scholar 

  60. Ondo D, Tkadlecová M, Dohnal V, Rak J, Kvíčala J, Lehmann JK, et al. Interaction of ionic liquids ions with natural cyclodextrins. J Phys Chem B. 2011;115:10285–97.

    CAS  PubMed  Google Scholar 

  61. Taguchi K. Transient binding of phenolphthalein-.beta.-cyclodextrin complex: an example of induced geometrical distortion. J Am Chem Soc. 1986;108:2705–9.

    CAS  Google Scholar 

  62. Fang L, Hmadeh M, Wu J, Olson MA, Spruell JM, Trabolsi A, et al. Acid−base actuation of [c2]daisy chains. J Am Chem Soc. 2009;131:7126–34.

    CAS  PubMed  Google Scholar 

  63. Clark PG, Day MW, Grubbs RH. Switching and extension of a [c2]daisy-chain dimer polymer. J Am Chem Soc. 2009;131:13631–3.

    CAS  PubMed  Google Scholar 

  64. Goujon A, Lang T, Mariani G, Moulin E, Fuks G, Raya J, et al. Bistable [c2] daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J Am Chem Soc. 2017;139:14825–8.

    CAS  PubMed  Google Scholar 

  65. Jimenez-Molero MC, Dietrich-Buchecker C, Sauvage J-P. Chemically induced contraction and stretching of a linear rotaxane dimer. Chem Eur J. 2002;8:1456–66.

    CAS  PubMed  Google Scholar 

  66. Jiménez MC, Dietrich-Buchecker C, Sauvage J-P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem Int Ed. 2000;39:3284–7.

    Google Scholar 

  67. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, et al. Autonomic healing of polymer composites. Nature. 2001;409:794–7.

    CAS  PubMed  Google Scholar 

  68. Diesendruck CE, Sottos NR, Moore JS, White SR. Biomimetic self-healing. Angew Chem Int Ed. 2015;54:10428–47.

    CAS  Google Scholar 

  69. White SR, Moore JS, Sottos NR, Krull BP, Santa Cruz WA, Gergely RCR. Restoration of large damage volumes in polymers. Science. 2014;344:620–3.

    CAS  PubMed  Google Scholar 

  70. Yang Y, Urban MW. Self-healing of polymers via supramolecular chemistry. Adv Mater Interfaces. 2018;5:1800384.

    Google Scholar 

  71. Campanella A, Döhler D, Binder WH. Self-healing in supramolecular polymers. Macromol Rapid Commun. 2018;39:1700739.

    Google Scholar 

  72. Chen Y, Kushner AM, Williams GA, Guan Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem. 2012;4:467–72.

    CAS  PubMed  Google Scholar 

  73. Wang H, Yang Y, Nishiura M, Higaki Y, Takahara A, Hou Z. Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes. J Am Chem Soc. 2019;141:3249–57.

    CAS  PubMed  Google Scholar 

  74. Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed. 2010;49:7461–4.

    CAS  Google Scholar 

  75. Harada A, Takahashi S. Preparation and properties of cyclodextrin–ferrocene inclusion complexes. Chem Commun. 1984:645–6.

  76. Wu J-S, Toda K, Tanaka A, Sanemasa I. Association constants of ferrocene with cyclodextrins in aqueous medium determined by solubility measurements of ferrocene. Bull Chem Soc Jpn. 1998;71:1615–8.

    CAS  Google Scholar 

  77. Nakahata M, Takashima Y, Yamaguchi H, Harada A. Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun. 2011;2:511.

    PubMed  PubMed Central  Google Scholar 

  78. Jia Y-G, Zhu XX. Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater. 2015;27:387–93.

    CAS  Google Scholar 

  79. Kakuta T, Takashima Y, Harada A. Highly elastic supramolecular hydrogels using host-guest inclusion complexes with cyclodextrins. Macromolecules. 2013;46:4575–9.

    CAS  Google Scholar 

  80. Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A. Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest monomers that contain cyclodextrins and hydrophobic guest groups. Adv Mater. 2013;25:2849–53.

    CAS  PubMed  Google Scholar 

  81. Miyamae K, Nakahata M, Takashima Y, Harada A. Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew Chem Int Ed. 2015;54:8984–7.

    CAS  Google Scholar 

  82. Nakahata M, Takashima Y, Harada A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol Rapid Commun. 2016;37:86–92.

    CAS  PubMed  Google Scholar 

  83. Shibayama M. Structure-mechanical property relationship of tough hydrogels. Soft Matter. 2012;8:8030–8.

    CAS  Google Scholar 

  84. Zhao X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter. 2014;10:672–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sato K, Nakajima T, Hisamatsu T, Nonoyama T, Kurokawa T, Gong JP. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels. Adv Mater. 2015;27:6990–8.

    CAS  PubMed  Google Scholar 

  86. Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater. 2002;14:1120–4.

    CAS  Google Scholar 

  87. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure‐of‐eight cross‐links. Adv Mater. 2001;13:485–7.

    CAS  Google Scholar 

  88. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules. 2008;41:5379–84.

    CAS  Google Scholar 

  89. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 2005;4:612–6.

    CAS  PubMed  Google Scholar 

  90. Hörning M, Nakahata M, Linke P, Yamamoto A, Veschgini M, Kaufmann S, et al. Dynamic mechano-regulation of myoblast cells on supramolecular hydrogels cross-linked by reversible host-guest interactions. Sci Rep. 2017;7:7660.

    PubMed  PubMed Central  Google Scholar 

  91. Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Supramolecular materials cross-linked by host-guest inclusion complexes: the effect of side chain molecules on mechanical properties. Macromolecules. 2017;50:3254–61.

    CAS  Google Scholar 

  92. Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Photoswitchable gel assembly based on molecular recognition. Nat Commun. 2012;3:603.

    PubMed  PubMed Central  Google Scholar 

  93. Xiong C, Zhang L, Xie M, Sun R. Photoregulating of stretchability and toughness of a self-healable polymer hydrogel. Macromol Rapid Commun. 2018;39:1800018.

    Google Scholar 

  94. Imran AB, Seki T, Takeoka Y. Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance. Polym J. 2010;42:839–51.

    Google Scholar 

  95. Yao X, Mu J, Zeng L, Lin J, Nie Z, Jiang X, et al. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horiz. 2019;6:846–70.

    CAS  Google Scholar 

  96. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13.

    PubMed  Google Scholar 

  97. Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev. 2013;42:7421–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang M, Yan X, Huang F, Niu Z, Gibson HW. Stimuli-responsive host–guest systems based on the recognition of cryptands by organic guests. Acc Chem Res. 2014;47:1995–2005.

    CAS  PubMed  Google Scholar 

  99. Lenhardt JM, Black AL, Craig SL. gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc. 2009;131:10818–9.

    CAS  PubMed  Google Scholar 

  100. Karthikeyan S, Potisek SL, Piermattei A, Sijbesma RP. Highly efficient mechanochemical scission of silver-carbene coordination polymers. J Am Chem Soc. 2008;130:14968–9.

    CAS  PubMed  Google Scholar 

  101. Piermattei A, Karthikeyan S, Sijbesma RP. Activating catalysts with mechanical force. Nat Chem. 2009;1:133.

    CAS  PubMed  Google Scholar 

  102. Chen Y, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem. 2012;4:559.

    CAS  PubMed  Google Scholar 

  103. Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, et al. Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew Chem Int Ed. 2015;54:6168–72.

    CAS  Google Scholar 

  104. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater. 2010;10:14.

    Google Scholar 

  105. Yan X, Wang F, Zheng B, Huang F. Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev. 2012;41:6042–65.

    CAS  PubMed  Google Scholar 

  106. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ohtake T, Tanaka H. Redox-induced actuation in macromolecular and self-assembled systems. Polym J. 2016;48:25–37.

    CAS  Google Scholar 

  108. de Vries WC, Grill D, Tesch M, Ricker A, Nüsse H, Klingauf J, et al. Reversible stabilization of vesicles: redox-responsive polymer nanocontainers for intracellular delivery. Angew Chem Int Ed. 2017;56:9603–7.

    Google Scholar 

  109. Dam HH, Caruso F. Construction and degradation of polyrotaxane multilayers. Adv Mater. 2011;23:3026–9.

    CAS  PubMed  Google Scholar 

  110. Langer R. New methods of drug delivery. Science. 1990;249:1527.

    CAS  PubMed  Google Scholar 

  111. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.

    CAS  PubMed  Google Scholar 

  112. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181–98.

    CAS  PubMed  Google Scholar 

  113. Nakahata M, Takashima Y, Hashidzume A, Harada A. Redox‐generated mechanical motion of a supramolecular polymeric actuator based on host–guest interactions. Angew Chem Int Ed. 2013;52:5731–5.

    CAS  Google Scholar 

  114. Fleischmann C, Ritter H. Color indicator for supramolecular polymer chemistry: phenolphthalein-containing thermo- and pH-sensitive N-(isopropyl)acrylamide copolymers and β-cyclodextrin complexation. Macromol Rapid Commun. 2013;34:1085–9.

    CAS  PubMed  Google Scholar 

  115. Fleischmann C, Cheng J, Tabatabai M, Ritter H. Extended applicability of classical phenolphthalein: color changing polymeric materials derived from pH-sensitive acrylated phenolphthalein derivatives. Macromolecules. 2012;45:5343–6.

    CAS  Google Scholar 

  116. Trellenkamp T, Ritter H. Poly(N-vinylpyrrolidone) bearing covalently attached cyclodextrin via click-chemistry: synthesis, characterization, and complexation behavior with phenolphthalein. Macromolecules. 2010;43:5538–43.

    CAS  Google Scholar 

  117. Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, et al. Multifunctional stimuli-responsive supramolecular materials with stretching, coloring, and self-healing properties functionalized via host–guest interactions. Macromolecules. 2017;50:4144–50.

    CAS  Google Scholar 

  118. Mauro M. Gel-based soft actuators driven by light. J Mater Chem B. 2019;7:4234–42.

    CAS  Google Scholar 

  119. Díaz-Moscoso A, Ballester P. Light-responsive molecular containers. Chem Commun. 2017;53:4635–52.

    Google Scholar 

  120. Zhao Y-L, Stoddart JF. Azobenzene-based light-responsive hydrogel system. Langmuir. 2009;25:8442–6.

    CAS  PubMed  Google Scholar 

  121. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, et al. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat Commun. 2012;3:1270.

    PubMed  PubMed Central  Google Scholar 

  122. Stricker L, Fritz E-C, Peterlechner M, Doltsinis NL, Ravoo BJ. Arylazopyrazoles as light-responsive molecular switches in cyclodextrin-based supramolecular systems. J Am Chem Soc. 2016;138:4547–54.

    CAS  PubMed  Google Scholar 

  123. Wang D, Wu S. Red-light-responsive supramolecular valves for photocontrolled drug release from mesoporous nanoparticles. Langmuir. 2016;32:632–6.

    CAS  PubMed  Google Scholar 

  124. Wang D, Wagner M, Butt H-J, Wu S. Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue. Soft Matter. 2015;11:7656–62.

    CAS  PubMed  Google Scholar 

  125. Grzybowski BA, Huck WTS. The nanotechnology of life-inspired systems. Nat Nanotechnol. 2016;11:585–92.

    CAS  PubMed  Google Scholar 

  126. Browne WR, Feringa BL. Making molecular machines work. Nat Nanotechnol. 2006;1:25–35.

    CAS  PubMed  Google Scholar 

  127. Gandhi MV, Thompson BD. Smart materials and structures. London: Chapman & Hall; 1992.

    Google Scholar 

  128. Urban MW. Handbook of stimuli-responsive materials. Weinheim: Wiley-VCH Verlag GmbH; 2011.

    Google Scholar 

  129. Minko S. Responsive polymer materials: design and applications. New Jersey: Wiley-Blackwell; 2006.

    Google Scholar 

  130. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater. 2017;29:1603483.

    Google Scholar 

  131. Shin MK, Spinks GM, Shin SR, Kim SI, Kim SJ. Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater. 2009;21:1712–5.

    CAS  Google Scholar 

  132. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Molecular biology of the cell. New York: Garland Science; 2017.

    Google Scholar 

  133. Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J. Transcription against an applied force. Science. 1995;270:1653–7.

    CAS  PubMed  Google Scholar 

  134. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998;279:519–26.

    CAS  PubMed  Google Scholar 

  135. Vale RD, Milligan RA. The way things move: looking under the hood of molecular motor proteins. Science. 2000;288:88–95.

    CAS  PubMed  Google Scholar 

  136. Gelebart AH, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer EW, et al. Making waves in a photoactive polymer film. Nature. 2017;546:632–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature. 2003;425:145.

    CAS  PubMed  Google Scholar 

  138. Iamsaard S, Aßhoff SJ, Matt B, Kudernac T, Cornelissen JJLM, Fletcher SP, et al. Conversion of light into macroscopic helical motion. Nat Chem. 2014;6:229–35.

    CAS  PubMed  Google Scholar 

  139. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–10.

    CAS  PubMed  Google Scholar 

  140. Kumar K, Knie C, Bléger D, Peletier MA, Friedrich H, Hecht S, et al. A chaotic self-oscillating sunlight-driven polymer actuator. Nat Commun. 2016;7:11975.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hada M, Yamaguchi D, Ishikawa T, Sawa T, Tsuruta K, Ishikawa K, et al. Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules. Nat Commun. 2019;10:4159.

    PubMed  PubMed Central  Google Scholar 

  142. Kato T, Uchida J, Ichikawa T, Soberats B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym J. 2018;50:149–66.

    CAS  Google Scholar 

  143. Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature. 2005;434:879–82.

    CAS  PubMed  Google Scholar 

  144. Schill G. Catenanes, rotaxanes, and knots. New York: Academic Press; 1971.

    Google Scholar 

  145. Bruns CJ, Stoddart JF. Rotaxane-based molecular muscles. Acc Chem Res. 2014;47:2186–99.

    CAS  PubMed  Google Scholar 

  146. Koyama Y, Suzuki Y, Asakawa T, Kihara N, Nakazono K, Takata T. Polymer architectures assisted by dynamic covalent bonds: synthesis and properties of boronate-functionalized polyrotaxane and graft polyrotaxane. Polym J. 2012;44:30–7.

    CAS  Google Scholar 

  147. Takata T, Aoki D. Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J. 2018;50:127–47.

    CAS  Google Scholar 

  148. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng H-R, et al. Linear artificial molecular muscles. J Am Chem Soc. 2005;127:9745–59.

    CAS  PubMed  Google Scholar 

  149. Du G, Moulin E, Jouault N, Buhler E, Giuseppone N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew Chem Int Ed. 2012;51:12504–8.

    CAS  Google Scholar 

  150. Takashima Y, Hayashi Y, Osaki M, Kaneko F, Yamaguchi H, Harada A. A photoresponsive polymeric actuator topologically cross-linked by movable units based on a [2]rotaxane. Macromolecules. 2018;51:4688–93.

    CAS  Google Scholar 

  151. Iwaso K, Takashima Y, Harada A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat Chem. 2016;8:625.

    CAS  PubMed  Google Scholar 

  152. Ikejiri S, Takashima Y, Osaki M, Yamaguchi H, Harada A. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J Am Chem Soc. 2018;140:17308–15.

    CAS  PubMed  Google Scholar 

  153. Huxley AF. Biological motors: energy storage in myosin molecules. Curr Biol. 1998;8:R485–R8.

    CAS  PubMed  Google Scholar 

  154. Takashima Y, Otani K, Kobayashi Y, Aramoto H, Nakahata M, Yamaguchi H, et al. Mechanical properties of supramolecular polymeric materials formed by cyclodextrins as host molecules and cationic alkyl guest molecules on the polymer side chain. Macromolecules. 2018;51:6318–26.

    CAS  Google Scholar 

  155. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8:621–9.

    CAS  PubMed  Google Scholar 

  156. Susan MA, Kaneko T, Noda A, Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc. 2005;127:4976–83.

    CAS  PubMed  Google Scholar 

  157. Eiji K, Tomoki Y, Yu I, Ping GJ, Hideto M. Inorganic/organic double-network gels containing ionic liquids. Adv Mater. 2017;29:1704118.

    Google Scholar 

  158. Obadia MM, Mudraboyina BP, Serghei A, Montarnal D, Drockenmuller E. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C-N bonds. J Am Chem Soc. 2015;137:6078–83.

    CAS  PubMed  Google Scholar 

  159. Zhang W, Yuan C, Guo JN, Qiu LH, Yan F. Supramolecular ionic liquid gels for quasi-solid-state dye-sensitized solar cells. ACS Appl Mater Interfaces. 2014;6:8723–8.

    CAS  PubMed  Google Scholar 

  160. Wu A, Lu F, Sun P, Qiao X, Gao X, Zheng L. Low-molecular-weight supramolecular ionogel based on host–guest interaction. Langmuir. 2017;33:13982–9.

    CAS  PubMed  Google Scholar 

  161. Amajjahe S, Ritter H. Supramolecular controlled pseudo-LCST effects of cyclodextrin-complexed poly(ionic liquids). Macromolecules. 2008;41:3250–3.

    CAS  Google Scholar 

  162. Amajjahe S, Choi S, Munteanu M, Ritter H. Pseudopolyanions based on poly(NIPAAM-co-β-cyclodextrin methacrylate) and ionic liquids. Angew Chem Int Ed. 2008;47:3435–7.

    CAS  Google Scholar 

  163. Sinawang G, Kobayashi Y, Zheng Y, Takashima Y, Harada A, Yamaguchi H. Preparation of supramolecular ionic liquid gels based on host–guest interactions and their swelling and ionic conductive properties. Macromolecules. 2019;52:2932–8.

    CAS  Google Scholar 

  164. Sinawang G, Kobayashi Y, Osaki M, Takashima Y, Harada A, Yamaguchi H. Mechanical and self-recovery properties of supramolecular ionic liquid elastomers based on host–guest interactions and correlation with ionic liquid content. RSC Adv. 2019;9:22295–301.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to past and present students, postdoctoral fellows, and collaborators whose names appear in the list of references. Financial support was received from the ImPACT Program of the Council for Science, Technology, and Innovation (Cabinet Office, Government of Japan), Grants-in-Aid for Scientific Research (B) (No. JP26288062 & JP18H02035) from MEXT of Japan, Scientific Research on Innovative Area (Grant Number JP19H05721) from JSPS of Japan, the JST-Mirai Program (Grant Number JPMJMI18E3), Japan, the Research Grant Program from the Ogasawara Foundation for the Promotion of Science & Engineering, the Iketani Science and Technology Foundation, the Asahi Glass Foundation, and the Murata Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshinori Takashima or Akira Harada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinawang, G., Osaki, M., Takashima, Y. et al. Biofunctional hydrogels based on host–guest interactions. Polym J 52, 839–859 (2020). https://doi.org/10.1038/s41428-020-0352-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0352-7

This article is cited by

Search

Quick links