Skip to main content
Log in

Asymmetric Control of Coexisting Slow and Fast Rhythms in a Multifunctional Central Pattern Generator: A Model Study

  • Published:
Neurophysiology Aims and scope

Using a simulation approach, we propose a biophysically feasible mechanism describing how a multifunctional central pattern generator (CPG) can produce co-existing slow and fast rhythms of the patterned motor output. This mechanism suggests that the same core elemental CPG can produce either a locomotion or a paw shaking rhythm in mammals (cat). We built a Hodgkin–Huxley-style biophysical model that generates multistability of a locomotion-like regime and a paw shake-like regime. This model is constructed as a half-center oscillator (HCO), in which two inhibitory neurons (representing the respective neuronal populations in real CPGs) reciprocally inhibit each other. We propose that the locomotion rhythm and the paw shaking rhythm are controlled by two different slowly inactivating intrinsic ion currents. In our model, slowly inactivating low voltage-activated calcium current (ICaS) drives the locomotion-like regime, while slowly inactivating sodium current (INaS) drives the paw shakelike regime. We investigated whether asymmetric characteristics of these regimes could be reliably and separately controlled by asymmetric variation of the conductances of these two currents. We found that variation of the conductance of ICaS in only one neuron, while holding this conductance constant in the other neuron, produces asymmetric changes in bursting characteristics, including the burst duration and interburst interval of the locomotion-like regime without producing notable changes of the paw shake-like regime. We also found that similar variation of the conductance of INaS affects the bursting characteristics of both regimes, although the paw shake-like regime is affected more remarkably than the locomotion-like one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Yakovenko, D. A. McCrea, K. Stecina, et al., “Control of locomotor cycle durations,” J. Neurophysiol., 94, No. 2, 1057–1065 (2005).

    Article  CAS  Google Scholar 

  2. A. Frigon and J. P. Gossard, “Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat,” J. Physiol., 587, Pt. 19, 4617–4628 (2009).

    Article  CAS  Google Scholar 

  3. B. Bondy, A. N. Klishko, D. H. Edwards, et al., “Control of cat walking and paw-shake by a multifunctional central pattern generator,” in: Neuromechanical Modeling of Posture and Locomotion, B. I. Prilutsky and D. H. Edwards (eds.), Springer, New York (2016), pp. 333–359.

    Chapter  Google Scholar 

  4. J. Parker, B. Bondy, B. I. Prilutsky, et al., “Control of transitions between locomotor-like and paw shakelike rhythms in a model of a multistable central pattern generator,” J. Neurophysiol., 120, No. 3, 1074–1089 (2018).

    Article  CAS  Google Scholar 

  5. R. L. Calabrese, F. Nadim, and O. H. Olsen, “Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns,” J. Neurobiol., 27, No. 3, 390–402 (1995).

    Article  CAS  Google Scholar 

  6. G. S. Cymbalyuk, Q. Gaudry, M. A. Masino, et al., “Burst-ing in leech heart interneurons: cell-autonomous and network-based mechanisms,” J. Neurosci., 22, No. 24, 10580–10592 (2002).

    Article  CAS  Google Scholar 

  7. A. A. Hill, J. Lu, M. A. Masino, et al., “A model of a segmental oscillator in the leech heartbeat neuronal network,” J. Comput. Neurosci., 10, No. 3, 281–302 (2001).

    Article  CAS  Google Scholar 

  8. D. A. McCrea and I. A. Rybak, “Modeling the mammalian locomotor CPG: insights from mistakes and perturbations,” Prog. Brain Res., 165, 235–253 (2007).

    Article  Google Scholar 

  9. I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, et al., “Modelling spinal circuitry involved in locomo-tor pattern generation: insights from deletions during fictive locomotion,” J. Physiol., 577, Pt. 2, 617–639 (2006).

    Article  CAS  Google Scholar 

  10. N. A. Shevtsova and I. A. Rybak, “Organization of flexorextensor interactions in the mammalian spinal cord: insights from computational modelling,” J. Physiol., 594, No. 21, 6117–6131 (2016).

    Article  CAS  Google Scholar 

  11. S. N. Markin, M. A. Lemay, B. I. Prilutsky, et al., “Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study,” J. Neurophysiol., 107, No. 8, 2057–2071 (2012).

    Article  Google Scholar 

  12. H. Barbeau and S. Rossignol, “The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat,” Brain Res., 514, No. 1, 55–67 (1990).

    Article  CAS  Google Scholar 

  13. H. Barbeau and S. Rossignol, “Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs,” Brain Res., 546, No. 2, 250–260 (1991).

    Article  CAS  Google Scholar 

  14. A. J. Berger and T. Takahashi, “Serotonin enhances a low voltage-activated calcium current in rat spinal motoneurons,” J. Neurosci., 10, No. 6, 1922–1928 (1990).

    Article  CAS  Google Scholar 

  15. C. Chau, H. Barbeau, and S. Rossignol, “Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats,” J. Neurophysiol., 79, No. 6, 2941–2963 (1998).

    Article  CAS  Google Scholar 

  16. O. Kiehn, K. T. Sillar, O. Kjaerulff, et al., “Effects of noradrenaline on locomotor rhythm–generating networks in the isolated neonatal rat spinal cord,” J. Neurophysiol., 82, No. 2, 741–746 (1999).

    Article  CAS  Google Scholar 

  17. G. B. Miles and K. T. Sillar, “Neuromodulation of vertebrate locomotor control networks,” Physiology (Bethesda), 26, No. 6, 393–411 (2011).

    CAS  Google Scholar 

  18. M. Goulding, S. Bourane, L. Garcia-Campmany, et al., “Inhibition down under: an update from the spinal cord,” Curr. Opin. Neurobiol., 26, 161–166 (2014).

    Article  CAS  Google Scholar 

  19. J. Zhang, G. M. Lanuza, O. Britz, et al., “V1 and v2b interneurons secure the alternating flexor-extensor motor activity in mice required for limbed locomotion,” Neuron, 82, No. 1, 138–150 (2014).

    Article  CAS  Google Scholar 

  20. D. A. McCrea and I. A. Rybak, “Organization of mammalian locomotor rhythm and pattern generation,” Brain Res. Rev., 57, No. 1, 134–146 (2008).

    Article  Google Scholar 

  21. M. Hagglund, K. J. Dougherty, L. Borgius, et al., “Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion,” Proc. Natl. Acad. Sci. USA, 110, No. 28, 11589–11594 (2013).

    Article  Google Scholar 

  22. S. Grillner and A. El Manira, “Current principles of motor control, with special reference to vertebrate locomotion,” Physiol. Rev., 100, No. 1, 271–320 (2020).

    Article  Google Scholar 

  23. E. Marder, D. Bucher, “Central pattern generators and the control of rhythmic movements,” Curr. Biol., 11, No. 23, R986–R996 (2001).

    Article  CAS  Google Scholar 

  24. S. Grillner, “Control of locomotion in bipeds, tetrapods, and fish,” Compr. Physiol., Suppl. 2, Handbook of Physiology, The Nervous System, Motor Control: 1179–1236 (2011).

  25. J. Cheng, R. B. Stein, K. Jovanovic, et al., “Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord,” J. Neurosci., 18, No. 11, 4295–4304 (1998).

    Article  CAS  Google Scholar 

  26. K. L. Briggman and W. B. Kristan, Jr., “Imaging dedicated and multifunctional neural circuits generating distinct behaviors,” J. Neurosci., 26, No. 42, 10925–10933 (2006).

    Article  CAS  Google Scholar 

  27. S. R. Soffe, “Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord,” J. Neurosci., 13, No. 10, 4456–4469 (1993).

    Article  CAS  Google Scholar 

  28. J. C. Liao and J. R. Fetcho, “Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish,” J. Neurosci., 28, No. 48, 12982–12992 (2008).

    Article  CAS  Google Scholar 

  29. L. Cangiano and S. Grillner, “Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord,” J. Neurosci., 25, No. 4, 923–935 (2005).

    Article  CAS  Google Scholar 

  30. L. Cangiano, R. H. Hill, and S. Grillner, “The hemisegmental locomotor network revisited,” Neuroscience, 210, 33–37 (2012).

    Article  CAS  Google Scholar 

  31. A. Berkowitz, “Both shared and specialized spinal circuitry for scratching and swimming in turtles,” J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.,188, No. 3, 225–234 (2002).

    Article  Google Scholar 

  32. Z.-Z. Hao, L. E. Spardy, E. B. Nguyen, et al., “Strong interactions between spinal cord networks for locomotion and scratching,” J. Neurophysiol., 106, No. 4, 1766–1781 (2011).

    Article  Google Scholar 

  33. A. C. Snyder and J. E. Rubin, “Conditions for multifunctionality in a rhythm generating network inspired by turtle scratching,” J. Math. Neurosci., 5, No. 1, 26 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cymbalyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parker, J., Khwaja, R. & Cymbalyuk, G. Asymmetric Control of Coexisting Slow and Fast Rhythms in a Multifunctional Central Pattern Generator: A Model Study. Neurophysiology 51, 390–399 (2019). https://doi.org/10.1007/s11062-020-09834-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09834-9

Keywords

Navigation