Skip to main content
Log in

A “Thermodynamic” Model of Central Commands Coming to the Muscles during Upper Limb Movements

  • Published:
Neurophysiology Aims and scope

A model of central commands (CCs) coming to the muscles during limb movements is proposed; it is based on experimental studies of the nonlinear dynamics of muscle contraction and of the parafrontal two-joint arm movements in humans. It is known that such CCs possess powerful hysteresis properties; levels of muscle activation rise within parts of the movement trajectories, where the muscles are actively shortened and overcome the action of an external force, but decrease during muscle stretching by the above force. Basing on an analogy with the classic thermodynamics, a “thermodynamic” model (T-model) is proposed, which allows one to predict the nonlinear functional interdependence of three basic parameters defining the muscle state, namely E (intensity of efferent activity), F (muscle force), and L (muscle length). The T-model includes the time-dependent integration of the equations defining the interrelations between infinitesimal changes of the above parameters, which are assumed to be the exact differentials. By inducing only one additional parameter, the hysteresis weight, the T-model can satisfactorily explain patterns of EMG records observed in real movements of the arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Hollerbach, “Computers, brains, and the control of movement,” Trends Neurosci., 5, 189–192 (1982).

    Article  Google Scholar 

  2. M. Kawato, “Internal models for motor control and trajectory planning,” Curr. Opin. Neurobiol., 9, No. 6, 718–727 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. D. M. Wolpert and Z. Ghahramani, “Computational principles of movement neuroscience,” Nat. Neurosci., 3, 1212–1217 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter, “Does the nervous system use equilibrium-point control to guide single and multiple joint movements?” Behav. Brain Sci., 15, No. 4, 603–613 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. A. G. Feldman, “Once more for the equilibrium point hypothesis (λ model) for motor control,” J. Mot. Behav., 18, No. 1, 17–54 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. A. G. Feldman, “Space and time in the context of equilibrium-point theory,” Wiley Interdiscip. Rev. Cogn. Sci., 2, No. 3, 287–304 (2011).

    Article  PubMed  Google Scholar 

  7. G. C. Joyce, P. M. Rack, and D. R. Westbury, “Some mechanical properties of the cat soleus muscle at various stimulus rates,” J. Physiol., 197, No. 1, 23P–25P (1968).

    CAS  PubMed  Google Scholar 

  8. P. M. Rack and D. R. Westbury, “The effects of length and stimulus rate on tension in the isometric cat soleus muscle,” J. Physiol., 204, No. 2, 443–460 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. I. Kostyukov, “Muscle dynamics: dependence of muscle length on changes in external load,” Biol. Cybern., 56, Nos. 5/6, 375–387 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. A. I. Kostyukov and O. E. Korchak, “Length changes of the cat soleus muscle under frequency-modulated distributed stimulation of efferents in isotony,” Neuroscience, 82, No. 3, 943–955 (1997).

    Article  Google Scholar 

  11. A. I. Kostyukov, “Muscle hysteresis and movement control: a theoretical study,” Neuroscience, 83, No. 1, 303–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. A. I. Kostyukov and V. L. Cherkassky, “Interaction of the movement-dependent, extrafusal and fusimotor aftereffects in the firing of the primary spindle endings,” Neuroscience, 76, No. 4, 1257–1266 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. A. I. Kostyukov, S. V. Lytvynenko, N. V. Bulgakova, A. V. Gorkovenko, “Subthreshold activation of spinal motoneurones in the stretch reflex: experimental data and modeling,” Biol. Cybern., 100, No. 4, 307–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. T. Tomiak, T. I. Abramovych, A. V. Gorkovenko, et al., “The movement- and load-dependent differences in the EMG patterns of the human arm muscles during twojoint movements (a preliminary study),” Front. Physiol., 7, No. 218 (2016); doi: https://doi.org/10.3389/fphys.2016.00218.

  15. I. V. Vereshchaka, A. V. Gorkovenko, O.V. Lehedza, et al., “EMG patterns of the elbow- and shoulder-operating muscles in slow parafrontal upper limb movements under isotonic loading,” Neurophysiology, 50, No. 6, 466–474 (2018)

    Article  Google Scholar 

  16. A. I. Kostyukov, O. V. Lehedza, A. V. Gorkovenko, et al., “Hysteresis and synergy of the central commands to muscles participating in parafrontal upper limb movements,” Front. Physiol. No. 10, 1441 (2019), doi:https://doi.org/10.3389/fphys.2019.01441

    Article  Google Scholar 

  17. A. I. Kostyukov, “Theoretical analysis of the force and position synergies in two-joint movements,” Neurophysiology, 48, No. 4, 287–296 (2016).

    Article  Google Scholar 

  18. T. Tomiak, A. V. Gorkovenko, A. N. Tal’nov, et al., “The averaged EMGs recorded from the arm muscles during bimanual “rowing” movements,” Front. Physiol., 6, No. 349 (2015); doi: https://doi.org/10.3389/fphys.2015.00349.

  19. O.V. Lehedza, A.V. Gorkovenko, I.V. Vereshchaka, et. al., “Comparative analysis of electromyographic muscle activity of the human hand during cyclic turns of isometric effort vector of wrist in opposite directions,” Int. J. Physiol. Pathophysiol., 61, No. 2, 3–14 (2016).

    Google Scholar 

  20. O. V. Lehedza, “Manifestations of hysteresis in EMG activity of muscles of the human upper limb in generation of cyclic isometric efforts,” Neurophysiol.49, No. 3, 220–225 (2017).

    Article  Google Scholar 

  21. G. B. Thomas, Jr. and R. L. Finney, Calculus and Analytic Geometry, 9th ed., Addison-Wesley (1996); ISBN 978-0201531749, 0201531747.

  22. Y. A. Çengel and M. A. Boles, “Thermodynamics Property Relations,” in: Thermodynamics - An Engineering Approach, McGraw-Hill Series in Mechanical Engineering (3rd ed.). Boston, MA (1998); ISBN 0-07-011927-9.

  23. A. I. Kostyukov, and T. Tomiak, “The force generation in a two-joint arm model: analysis of the joint torques in the working space,” Front. Neurorobot., 12, No. 77 (2018); doi: https://doi.org/10.3389/fnbot.2018.00077

  24. I. V. Vereshchaka, W. Pilewska, M. Zasada, and A. I. Kostyukov, “Three-dimensional representation of equilibrium joint torques in two-joint movements of the upper limb,” Neurophysiology, 50, No. 6, 475–488. (2018).

    Article  Google Scholar 

  25. A. V. Gorkovenko, “Theoretical analysis of the peculiarities of motor control at generation of two-joint isometric efforts by the human upper limb,” Neurophysiology, 50, No. 4, 309–321 (2018).

    Article  Google Scholar 

  26. N. Dounskaia, “The internal model and the leading joint hypothesis: implications for control of multi-joint movements,” Exp. Brain Res.166, No. 1, 1–16 (2005).

    Article  PubMed  Google Scholar 

  27. N. Dounskaia, J. Goble, and W. Wang, “The role of intrinsic factors in control of arm movement direction: implications from directional preferences,” J. Neurophysiol.,105, No.3, 999–1010 (2011).

    Article  PubMed  Google Scholar 

  28. L. E. Karbach and J. Elfar, “Elbow Instability: Anatomy, Biomechanics, Diagnostic Maneuvers, and Testing,” J. Hand Surg., 42, No. 2, 118–126 (2017)

    Article  Google Scholar 

  29. A. V. Gorkovenko, S. Sawczyn, N. V. Bulgakova, et. al., “Muscle agonist-antagonist interactions in an experimental joint model,” Exp. Brain Res.,222, 399–414 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. T. E. Milner and C. Cloutier, “Damping of the wrist joint during voluntary movement,” Exp. Brain Res.,122, No.3, 309–317 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. P. L. Gribble and D. J. Ostry, “Independent coactivation of shoulder and elbow muscles,” Exp. Brain Res.,123, No.3, 335–360 (1998).

    Article  Google Scholar 

  32. A. M. Hill, A. M. J. Bull, A. L. Wallace, and G. R. Johnson, “Qualitative and quantitative descriptions of glenohumeral motion,” Gait Posture,27, No.2, 177–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. C. D. Bryce and A. D. Armstrong, “Anatomy and biomechanics of the elbow,” Orthop. Clin. North Am.,39, No.2, 141–154 (2008).

    Article  PubMed  Google Scholar 

  34. B. M. Van Bolhuis, C. C. Gielen, and G. J. van Ingen Schenau, “Activation patterns of mono- and bi-articular arm muscles as a function of force and movement direction of the wrist in humans,” J. Physiol.,508, (Pt 1), 313–324 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kostyukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyukov, A.I. A “Thermodynamic” Model of Central Commands Coming to the Muscles during Upper Limb Movements. Neurophysiology 51, 358–372 (2019). https://doi.org/10.1007/s11062-020-09830-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09830-z

Keywords

Navigation