Skip to main content
Log in

Some Features of Critical Parameters Calculations of Nonhomogeneous Superconducting Films Using the Ginzburg–Landau Theory

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A method for calculating the critical state of inhomogeneous superconducting films using the Ginzburg–Landau (GL) theory is proposed. From the condition of minimizing the functional of the GL free energy, a system of equations describing the superconducting state of an inhomogeneous plate is derived. The dependences of the critical current of the plate on the external magnetic field are numerically calculated. It is shown that the critical current in a zero external magnetic field decreases with increasing degree of film inhomogeneity, while the critical magnetic field (at a zero transport current) increases. An analysis of the calculated dependences of the product of the critical current and the external magnetic field (an analogue of the volume pinning force) of superconducting films on the external magnetic field shows that the maximum of this value shifts to stronger fields with increasing degree of inhomogeneity, i.e., an increase in inhomogeneity leads to an increase in the pinning force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Yong, S. Lee, J. Jiang, C. W. Bark, J. D. Weiss, E. E. Hellstrom, D. C. Larbalestier, C. B. Eom, T. R. Lemberger, “Superfluid Density Measurements of Ba(CoxFe1 –x)2As2 Films near Optimal Doping,” Phys. Rev. B 83, 104510 (2011). https://doi.org/10.1103/PhysRevB.83.104510

    Article  ADS  Google Scholar 

  2. D. Yu. Vodolazov, Yu. P. Korneeva, A. V. Semenov, A. A. Korneev, and G. N. Goltsman, “Vortex-Assisted Mechanism of Photon Counting in a Superconducting Nanowire Single-Photon Detector Revealed by External Magnetic Field,” Phys. Rev. B 92, 104503 (2015). https://doi.org/10.1103/PhysRevB.92.104503

    Article  ADS  Google Scholar 

  3. M. Shcherbatenko, Y. Lobanov, A. Semenov, V. Kovalyuk, A. Korneev, R. Ozhegov, A. Kazakov, B. M. Voronov, and G. N. Goltsman, “Potential of a Superconducting Photon Counter for Heterodyne Detection at the Telecommunication Wavelength,” Opt. Express 24, 30474 (2016). https://doi.org/10.1364/OE.24.030474

    Article  ADS  Google Scholar 

  4. Yu. P. Korneeva, D. Yu. Vodolazov, A. V. Semenov I. N. Florya, N. Simonov, E. Baeva, A. A. Korneev, G. N. Goltsman, and T. M. Klapwijk, “Optical Single-Photon Detection in Micrometer-Scale NbN Bridges,” Phys. Rev. Applied 9, 64037 (2018). https://doi.org/10.1103/PhysRevApplied.9.064037

    Article  Google Scholar 

  5. S. B. Kaplan and H. Engseth, “A High-Speed Superconducting Digital Autocorrelator Operating at 20.48 GHz,” Superconductor Science and Technology 20, S310 (2007). https://doi.org/10.1088/0953-2048/20/11/s02

    Article  ADS  Google Scholar 

  6. P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, “On the Role of the Boundary Conditions in the Ginzburg–Landau Theory,” Bull. Lebedev Phys. Inst. 41, 153 (2014). https://doi.org/10.3103/S1068335614060013

    Article  ADS  Google Scholar 

  7. P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, “Calculation of the Temperature Dependences of the Critical Field and the Density of Critical Current for a Superconducting Plate within the Ginzburg–Landau Theory,” Bull. Lebedev Phys. Inst. 42, 1 (2015). https://doi.org/10.3103/S1068335615010017

    Article  ADS  Google Scholar 

  8. P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, “Investigation of the Properties of Superconducting Plates with a Thickness of the Order of the Coherence Length ξ in the Framework of the Ginzburg–Landau Theory,” Phys. Solid State 57, 1300 (2015). https://doi.org/10.1134/S1063783415070070

    Article  ADS  Google Scholar 

  9. P. I. Bezotosnyi, S. Yu. Gavrilkin, K. A. Dmitrieva, A. N. Lykov, and A. Yu. Tsvetkov, “Technique for Calculating the Critical Current of Inhomogeneous Superconducting Films,” Phys. Solid State 61, 94 (2019). https://doi.org/10.1134/S1063783419020069

    Article  ADS  Google Scholar 

  10. E. A. Andryushin V. L. Ginzburg, and A. P. Silin, “On Boundary-Conditions in Macroscopic Theory of Superconductivity,” Usp. Fiz. Nauk 163, 105 (1993). https://doi.org/10.3367/UFNr.0163.199309f.0105

  11. N. P. Shabanova, S. I. Krasnosvobodtsev, A. V. Varlashkin, and A. I. Golovashkin, “Critical Magnetic Field of the Vortex-Free State in NbC Thin Films and Prospects for Its Observation in MgB2,” Phys. Solid State 49, 1040 (2007). https://doi.org/10.1134/S1063783407060030

    Article  ADS  Google Scholar 

  12. P. G. de Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966).

    MATH  Google Scholar 

  13. V. L. Ginzburg, “Critical Current for Superconducting Films,” Dokl. Akad. Nauk SSSR 118, 464 (1958).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.S. Kalenkov for helpful remarks.

Funding

The study of P.I. Bezotosnyi, K.A. Dmitrieva, S.Yu. Gavrilkin, and A.Yu. Tsvetkov was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 0023-2019-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Bezotosnyi.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezotosnyi, P.I., Dmitrieva, K.A., Gavrilkin, S.Y. et al. Some Features of Critical Parameters Calculations of Nonhomogeneous Superconducting Films Using the Ginzburg–Landau Theory. Bull. Lebedev Phys. Inst. 47, 48–53 (2020). https://doi.org/10.3103/S1068335620020025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620020025

Keywords:

Navigation