Skip to main content
Log in

Microscopic approach to the calculation of extensive air shower radio emission

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—Within the kinetic theory of extensive air shower (EAS), an approach to calculating electron charge excess radio emission is formulated. Using the Tamm formula, emission of each electron of the shower disk is calculated taking into account its spatial distribution, temporal evolution along the EAS track, electron energy spectrum, and multiple scattering. Radiation from all EAS tracks is summed taking into account partial coherence loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Huege, “Radio Detection of Cosmic Ray Air Showers in the Digital Era,” Phys. Rep. 620, 1 (2016). https://doi.org/10.1016/j.physrep.2016.02.001

    Article  ADS  MathSciNet  Google Scholar 

  2. F. G. Schröder, “Radio Detection of Cosmic-Ray Air Showers and High-Energy Neutrinos,” Progr. Part. Nucl. Phys. 93, 1 (2017). https://doi.org/10.1016/j.ppnp.2016.12.002

    Article  ADS  Google Scholar 

  3. M. W. E. Smith, D. B. Fox, D. F. Cowen, P. Meszaros, G. Tesic, J. Fixelle, I. Bartos, P. Sommers, Ashtekar Abhay, G. Balu Jogesh, S. D. Barthelmy, S. Coutu, T. De Young, A. D. Falcone, Gao Shan, B. Hashemi, A. Homeier, S. Marka, B. J. Owen, I. Taboada, “The Astrophysical Multimessenger Observatory Network (AMON),” Astropart. Phys. 45, 56 (2013), https://doi.org/10.1016/j.astropartphys.2013.03.003

    Article  ADS  Google Scholar 

  4. W. D. Apel et al. KASCADE-Grande Collaboration, “KASCADE-Grande Measurements of Energy Spectra for Elemental Groups of Cosmic Ray,” Astropart. Phys. 47, 54, (2013). https://doi.org/10.1016/j.astropartphys.2013.06.004

    Article  ADS  Google Scholar 

  5. O. Scholten, K. D. de Vries, and K. Werner, “Accelerators, Spectrometers, Detectors, and Associated Equipment,” Nucl. Instrum. Methods (Suplement1) A 662, S80 (2012). https://doi.org/10.1016/j.nima.11.25

  6. M. Ludwig and T. Huege, “REAS3: Monte Carlo Simulations of Radio Emission from Cosmic Ray Air Showers Using an “End-Point” Formalism,” Astropart. Phys. 34, 438, (2011). https://doi.org/10.1016/j.astropartphys.2010.10.012

    Article  ADS  Google Scholar 

  7. F. D. Kahn and I. Lerche, “Radiation from Cosmic Ray Air Showers,” Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 289, 206, (1966). https://doi.org/10.1098/rspa.1966.0007

  8. O. Scholten, K. Werner, and F. Rusydi, “A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Ray Air Showers,” Astropart. Phys. 29, 94 (2008). https://doi.org/10.1016/j.astropartphys.2007.11.012

    Article  ADS  Google Scholar 

  9. K. Verner, K. D. de Vries, O. Sholten, “A Realistic Treatment of Geomagnetic Cherenkov Radiation from Cosmic Ray Air Showers,” Astropart. Phys. 37, 5 (2012).https://doi.org/10.1016/j.astropartphys.2012.07.007

    Article  ADS  Google Scholar 

  10. V. A. Tsarev and V. A. Chechin, Long-Wavelength Coherent Radio Radiation of Cascades I. Calculation within the Cascade Theory,” Bull. Lebedev Phys. Inst. 36, 68 (2009). https://doi.org/10.3103/S1068335609030026

    Article  ADS  Google Scholar 

  11. V. A. Tsarev and V. A. Chechin, “Long-Wavelength Coherent Radio Radiation of Cascades. II. Consideration of the Geomagnetic Field Effect,” Bull. Lebedev Phys. Inst. 36, 76 (2009). https://doi.org/10.3103/S1068335609030038

    Article  ADS  Google Scholar 

  12. I. E. Tamm, “Radiation Emitted by Uniformly Moving Electrons,” J. Phys. 1, 439 (1939).

    MATH  Google Scholar 

  13. V. M. Kartashev, P. S. Kizim, V. E. Kovtun, S. N. Stervoedov, and E. S. Shmatko, “Electron Excess and Effect of Electromagnetic Induction of Extensive Air Showers,” Kosmichna Nauka i Tekhnologiya 16, 13 (2010). https://doi.org/10.15407/knit2010.03.003

    Article  Google Scholar 

  14. K. Kamata and J. Nishimura, “The Lateral and the Angular Structure Functions of Electron Showers,” Progr. Theoret. Phys. Suppl., No. 6, 93 (1958). https://doi.org/10.1143/PTPS.6.93

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.A. Ryabov for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gusev.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, G.A., Guseva, Z.G. Microscopic approach to the calculation of extensive air shower radio emission. Bull. Lebedev Phys. Inst. 47, 43–47 (2020). https://doi.org/10.3103/S1068335620020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620020050

Keywords:

Navigation