Skip to main content
Log in

Two New Customized Proximal Point Algorithms Without Relaxation for Linearly Constrained Convex Optimization

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we propose a new customized proximal point algorithm for linearly constrained convex optimization problem, and further extend the proposed method to separable convex optimization problem. Unlike the existing customized proximal point algorithms, the proposed algorithms do not involve relaxation step, but still ensure the convergence. We obtain the particular iteration schemes and the unified variational inequality perspective. The global convergence and \({\mathcal {O}}(1/k)\)-convergence rate of the proposed methods are investigated under some mild assumptions. Numerical experiments show that compared to some state-of-the-art methods, the proposed methods are effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The mapping F(w) is affine with a skew-symmetric matrix, and thus it is monotone; see He and Yuan [23]

References

  1. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965)

    Article  MATH  Google Scholar 

  2. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P., Tseng, P.: Partial proximal minimization algorithms for convex programming. SIAM J. Optim. 4(3), 551–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Glob. Optim. 13(4), 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Martinet, B.: Brève communication. Regularisation, d’iné quations variationelles par approximations succesives. ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer 4(R3), 154–158 (1970)

    Google Scholar 

  6. Kassay, G.: The proximal points algorithm for reflexive Banach spaces. Stud. Math. 30, 9–17 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 646–664 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10(10), 247–265 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, S.P.: A decomposition method and its application to convex programming. Math. Oper. Res. 14(2), 237–248 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM. Rep. 34, 1–29 (2008)

    Google Scholar 

  11. He, B.S.: PPA-like contraction methods for convex optimization: a framework using variational inequality approach. J. Oper. Res. Soc. China 3(4), 391–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, B.S., Fu, X.L., Jiang, Z.K.: Proximal point algorithm using a linear proximal term. J. Optim. Theory Appl. 141(2), 299–319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, B.S., Yuan, X.M., Zhang, W.: A customized proximal point algorithm for convex minimization with linear constraints. Comput. Optim. Appl. 56(3), 559–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(4), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. Optimization 5(6), 283–298 (1969)

    MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B.S.: Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities. Comput. Optim. Appl. 42(2), 195–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glowinski, R., Marrocco, A.: Analyse numerique du champ magnetique d’un alternateur par elements finis et sur-relaxation ponctuelle non lineaire. Comput. Meth. Appl. Mech. Eng. 3(1), 55–85 (1974)

    Article  MATH  Google Scholar 

  19. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  20. Gabay, D.: Chapter IX: applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)

    Google Scholar 

  21. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai, X.J., Gu, G.Y., He, B.S., Yuan, X.M.: A proximal point algorithm revisit on the alternating direction method of multipliers. Sci. China Math. 56(10), 2179–2186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B.S., Yuan, X.M.: On the \(O(1/n)\) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, B.S., Yuan, X.M.: On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. Numer. Math. 130(3), 567–577 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sarkis, J.: A strategic decision framework for green supply chain management. J. Clean. Prod. 11(4), 397–409 (2003)

    Article  Google Scholar 

  26. Wu, Z., Pagell, M.: Balancing priorities: Decision-making in sustainable supply chain management. J. Oper. Manag. 29(6), 577–590 (2011)

    Article  Google Scholar 

  27. Yazdani, M., Zarate, P., Coulibaly, A., Zavadskas, E.K.: A group decision making support system in logistics and supply chain management. Expert Syst. Appl. 88, 376–392 (2017)

    Article  Google Scholar 

  28. Gu, G., He, B.S., Yuan, X.M.: Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach. Comput. Optim. Appl. 59, 135–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cai, J.F., Candès, Emmanuel J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, M., Yuan, X.M., He, B.S.: Solving a class of matrix minimization problems by linear variational inequality approaches. Linear Alg. Appl. 434(11), 2343–2352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Doctor Wen-Xing Zhang at University of Electronic Science and Technology of China for his help on numerical experiments on image processing problems. This work was also supported by the Science and Technology on Communication Information Security Control Laboratory, Xiangtan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Peng.

Additional information

Communicated by Majid Soleimani-damaneh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Natural Science Foundation of China with Grants 11571074 and 11726505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Peng, Z. & Deng, K. Two New Customized Proximal Point Algorithms Without Relaxation for Linearly Constrained Convex Optimization. Bull. Iran. Math. Soc. 46, 865–892 (2020). https://doi.org/10.1007/s41980-019-00298-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-019-00298-0

Keywords

Mathematics Subject Classification

Navigation