Skip to main content
Log in

On Spliced Sequences and the Density of Points with Respect to a Matrix Constructed by using a Weight Function

  • Published:
Ukrainian Mathematical Journal Aims and scope

Following the line of investigation in [Linear Algebra Appl., 487, 22–42 (2015)], for y ∈ ℝ and a sequence x = (xn) ∈ , we define a new notion of density δg with respect to a weight function g of indices of the elements xn close to y, where g :  → [0, ∞)is such that g(n) → ∞and n/g(n)0. We present the relationships between the densities δg of indices of (xn) and the variation of the Cesàrolimit of (xn). Our main result states that if the set of the limit points of (xn) is countable and δg(y) exists for any y ∈ ℝ, then

$$ \underset{n\to \infty }{\lim}\frac{1}{g(n)}\sum \limits_{i-1}^n{x}_i=\sum \limits_{y\in \mathbb{R}}{\delta}_g(y)\cdot y, $$

which is an extended and much more general form of the “natural version of density from the Osikiewicz theorem.” Note that, in [Linear Algebra Appl., 487, 22–42 (2015)], the regularity of the matrix was used in the entire investigation, whereas in the present paper, the investigation is actually performed with respect to a special type of matrix, which is not necessarily regular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Balcerzak, K. Dems, and A. Komisarski, “Statistical convergence and ideal convergence for sequences of functions,” J. Math. Anal. Appl., 328, No. 1, 715–729 (2007).

    Article  MathSciNet  Google Scholar 

  2. M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, “Generalized kinds of density and the associated ideals,” Acta Math. Hungar., 147, No. 1, 97–115 (2015).

    Article  MathSciNet  Google Scholar 

  3. A. Bartoszewicz, P. Das, and S. Glab, “On matrix summability of spliced sequences and A-density of points,” Linear Algebra Appl., 487, 22–42 (2015).

    Article  MathSciNet  Google Scholar 

  4. S. Bhunia, P. Das, and S. K. Pal, “Restricting statistical convergence,” Acta Math. Hungar., 134, 153–161 (2012).

    Article  MathSciNet  Google Scholar 

  5. A. Bartoszewicz, S. Głąb, and A. Wachowicz, “Remarks on ideal boundedness, convergence and variation of sequences,” J. Math. Anal. Appl., 375, No. 2, 431–435 (2011).

    Article  MathSciNet  Google Scholar 

  6. P. Das, “Some further results on ideal convergence in topological spaces,” Topology Appl., 159, 2621–2625 (2012).

    Article  MathSciNet  Google Scholar 

  7. A. Faisant, G. Grekos, and V. Toma, “On the statistical variation of sequences,” J. Math. Anal. Appl., 306, No. 2, 432–439 (2005).

    Article  MathSciNet  Google Scholar 

  8. H. Fast, “Sur la convergence statistique,” Colloq. Math., 2, 241–244 (1951).

    Article  MathSciNet  Google Scholar 

  9. R. FilipÓw, N. Mrożek, I. Recław, and P. Szuca, “Ideal convergence of bounded sequences,” J. Symb. Log., 72, No. 2, 501–512 (2007).

    Article  MathSciNet  Google Scholar 

  10. R. FilipÓw and P. Szuca, “On some questions of Drewnowski and Łuczak concerning submeasures on N,” J. Math. Anal. Appl., 371, No. 2, 655–660 (2010).

    Article  MathSciNet  Google Scholar 

  11. R. FilipÓw and P. Szuca, “Density versions of Schur’s theorem for ideals generated by submeasures,” J. Combin. Theory Ser. A., 117, No. 7, 943–956 (2010).

    Article  MathSciNet  Google Scholar 

  12. A. R. Freedman and J. J. Sember, “Densities and summability,” Pacific J. Math., 95, 293–305 (1981).

    Article  MathSciNet  Google Scholar 

  13. J. A. Fridy, “On statistical convergence,” Analysis, 5, No. 4, 301–313 (1985).

    Article  MathSciNet  Google Scholar 

  14. J. A. Fridy, “Statistical limit points,” Proc. Amer. Math. Soc., 118, No. 4, 1187–1192 (1993).

    Article  MathSciNet  Google Scholar 

  15. R. Henstock, “The efficiency of matrices for bounded sequences,” J. Lond. Math. Soc., 25, 27–33 (1950).

    Article  MathSciNet  Google Scholar 

  16. J. Jasiński and I. Recław, “On spaces with the ideal convergence property,” Colloq. Math., 111, No. 1, 43–50 (2008).

    Article  MathSciNet  Google Scholar 

  17. P. Kostyrko, T. Šalát, and W. Wilczyński, “\( \mathcal{T} \)-convergence,” Real Anal. Exchange, 26, No. 2, 669–685 (2000/2001).

    Article  MathSciNet  Google Scholar 

  18. B. K. Lahiri and P. Das, \( \mathcal{T} \) and \( {\mathcal{T}}^{\ast } \)-convergence in topological spaces,” Math. Bohem., 130, 153–160 (2005).

    MathSciNet  Google Scholar 

  19. N. Mrożek, “Ideal version of Egorov’s theorem for analytic P-ideals,” J. Math. Anal. Appl., 349, No. 2, 452–458 (2009).

    Article  MathSciNet  Google Scholar 

  20. J. A. Osikiewicz, “Summability of spliced sequences,” Rocky Mountain J. Math., 35, No. 3, 977–996 (2005).

    Article  MathSciNet  Google Scholar 

  21. E. Savas, P. Das, and S. Dutta, “A note on strong matrix summability via ideals,” Appl. Math. Lett., 25, No. 4, 733–738 (2012).

    Article  MathSciNet  Google Scholar 

  22. E. Savas, P. Das, and S. Dutta, “A note on some generalized summability methods,” Acta Math. Univ. Comenian (N.S.), 82, No. 2, 297–304 (2013).

    MathSciNet  MATH  Google Scholar 

  23. I. J. Schoenberg, “The integrability of certain functions and related summability methods,” Amer. Math. Monthly, 66, 361–375 (1959).

    Article  MathSciNet  Google Scholar 

  24. S. Solecki, “Analytic ideals and their applications,” Ann. Pure Appl. Logic, 99, No. 1-3, 51–72 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Das.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 9, pp. 1192–1207, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, K., Das, P. & Sengupta, S. On Spliced Sequences and the Density of Points with Respect to a Matrix Constructed by using a Weight Function. Ukr Math J 71, 1359–1378 (2020). https://doi.org/10.1007/s11253-020-01720-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01720-1

Navigation