Skip to main content
Log in

Experimental Investigation on Fatigue Deformation of Salt Rock

  • EXPERIMENTAL INVESTIGATIONS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

This paper presents an experimental investigation of the deformation characteristics of salt rock under different loading conditions. A simple empirical model for the evolution of fatigue deformation is proposed. The results clearly show that the fatigue deformation is strongly dependent on the applied frequency, stress, and loading rate. The higher the loading frequency, loading rate, and stress amplitude, the smaller the proportion of uniform deformation to the whole deformation phase; hence, the fatigue lifetime greatly decreases. The proposed model was validated with experimental results and was shown to be efficient in the prediction of the fatigue deformation tendency of rock salt under different loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Liang, Y. S. Zhao, S. G. Xu, and M. B. Dusseault, "Effect of strain rate on the mechanical properties of salt rock," Int. J. Rock. Mech. Min. Sci., 48, 161-167 (2011).

    Article  Google Scholar 

  2. W. G. Liang, C. D. Zhang, H. B. Gao, X. Q. Yang, S. G. Xu, and Y. S. Zhao, "Experiments on mechanical properties of salt rocks under cyclic loading," J. Rock. Mech. Geotech. Eng., 4, 54-61 (2012).

    Article  Google Scholar 

  3. J. Chen, S. Ren, C. Yang, D. Jiang, and L. Li, "Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions," Materials, 8, 3438-3450 (2013).

    Article  Google Scholar 

  4. W. Liu, Y. P. Li, and C. H. Yang, "Permeability characteristics of mudstone cap rock and interlayers in bedded salt formations and tightness assessment for underground gas storage caverns," Eng. Geol., 193, 212-223 (2015).

    Article  Google Scholar 

  5. W. Liang, C. Yang, and Y. Zhao, "Experimental investigation of mechanical properties of bedded salt rock," Int. J. Rock. Mech. Min. Sci., 44, 400-411 (2007).

    Article  Google Scholar 

  6. J. Y. Fan, J. Chen, D. Y. Jiang, A. Chemenda, J. C. Chen, and J. Ambre, "Discontinuous cyclic loading tests of salt with acoustic emission monitoring," Int. J. Fatigue, 94, 140-144 (2017).

    Article  Google Scholar 

  7. R. K. Dubey and V. K. Gairola, "Influence of stress rate on rheology-an experimental study on rock salt of Simla Himalaya," Geotech. Geol. Eng., 23, 757-772 (2005).

    Article  Google Scholar 

  8. W. G. Liang, S. G. Xu, and Y. S. Zhao, "Experimental study of temperature effects on physical and mechanical characteristics of salt rock," Rock. Mech. Rock. Eng., 39, 469-482 (2006).

    Article  Google Scholar 

  9. V. I. Sheinin and D. I. Blokhin, "Features of thermomechanical effects in rock salt sample under uniaxial compression," J. Min. Sci., 48, 39-45 (2012).

    Article  Google Scholar 

  10. S. Kwon and J. Kim, "Effect of temperature variation on a rock salt deformation-a case study," Min. Technol. A, 114, 89-98 (2005).

    Article  Google Scholar 

  11. T. Sriapai, W. Chaowarin, and K. Fuenkajorn, "Effects of temperature on compressive and tensile strengths of salt," Sci. Asia., 38, 166-174 (2012).

    Article  Google Scholar 

  12. J. B. Wang, X. R. Liu, Z. P. Song, J, Q. Guo, and Q. Q. Zhang, "A creep constitutive model with variable parameters for thenardite," Environ. Earth Sci., 75, 979(1-12) (2016).

  13. H. Zhang, Z. Wang, Y. Zheng, P. Duan, and S. Ding, "Study on tri-axial creep experiment and constitute relation of different rock salt," Safety Sci., 50, 801 (2012).

    Article  Google Scholar 

  14. C. Yang, J. J. K. Daemen, and J. H. Yin, "Experimental investigation of creep behavior of salt rock," Int. J. Rock. Mech. Min. Sci., 36, 233-242 (1999).

    Article  Google Scholar 

  15. M. Aubertin, M. R. Julien, S. Servant, and D. E. Gill, "A rate-dependent model for the ductile behavior of salt rocks," Can. Geotech. J., 36, 660-674 (1999).

    Article  Google Scholar 

  16. W. R. Wawersik and D. H. Zeuch, "Modeling and mechanistic interpretation of creep of rock salt below 200°C," Tectonophysics, 121, 125 (1986).

    Article  Google Scholar 

  17. G. J. Wang, "A new constitutive creep-damage model for rocksalt," Int. J. Rock. Mech. Min. Sci., 41, 364 (2004).

    Article  Google Scholar 

  18. J. B. Wang, X. R. Liu, Z. P. Song, and Z. S. Shao, "An improved Maxwell creep model for salt rock," Geomech. Eng., 9, 499-511 (2015).

    Article  Google Scholar 

  19. L. U. Janos, J. S. Christopher, and J. Z. Hendrik, "Weakening of rock salt by water during long-term creep," Nature, 324, 554-557 (1986).

    Article  Google Scholar 

  20. J. Chen, D. Y. Jiang, S. Ren, and C. Yang, "Comparison of the characteristics of rock salt exposed to loading and unloading of confining pressures," Acta Geotech., 11, 221-230 (2016).

    Article  Google Scholar 

  21. J. Liu, H. Xie, Z. Hou, C. Yang, and L. Chen, "Damage evolution of rock salt under cyclic loading in unixial tests," Acta. Geotech., 9, 153-160 (2014).

    Article  Google Scholar 

  22. Y. Guo, C. Yang, and H. Mao, "Mechanical properties of Jintan rock salt under complex stress paths," Int. J. Rock. Mech. Min. Sci., 56, 54-61 (2012).

    Article  Google Scholar 

  23. S. Ren, Y. M. Bai, J. P. Zhang, D. Y. Jiang, and C. H. Yang, "Experimental investigation of the fatigue properties of salt rock," Int. J. Rock. Mech. Min. Sci., 64, 68-72 (2013).

    Article  Google Scholar 

  24. J. B. Wang, X. R. Liu, X. J. Liu, and M. Huang, "Creep properties and damage model for salt rock under low-frequency cyclic loading," Geomech. Eng., 7, 569-587 (2014).

    Article  Google Scholar 

  25. Y. S. Wang, L. J. Ma, P. X. Fan, and Y. Chen, "A fatigue damage model for rock salt considering the effects of loading frequency and amplitude," Int. J. Min. Sci. Technol., 26, 955-958 (2016).

    Article  Google Scholar 

  26. J. Chen, C. Du, D. Y. Jiang, J. Y. Fan, and Y. He, "The mechanical properties of rock salt under cyclic loading-unloading experiments," Geomech. Eng., 10, 325-334 (2016).

    Article  Google Scholar 

  27. A. Pouya, C. Zhu, and C. Arson, "Micro-macro approach of salt viscous fatigue under cyclic loading," Mech. Mater, 93, 13-31 (2016).

    Article  Google Scholar 

  28. J. Y. Fan, J. Chen, De. Y. Jiang, S. Ren, and J. X. Wu, "Fatigue properties of rock salt subjected to interval cyclic pressure," Int. J. Fatigue, 90, 109-115 (2016).

  29. E. L. Liu and S. M. He, "Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions," Eng. Geol., 125, 81-91 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. He.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 6, p. 14, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M.M., Ren, J., Su, P. et al. Experimental Investigation on Fatigue Deformation of Salt Rock. Soil Mech Found Eng 56, 402–409 (2020). https://doi.org/10.1007/s11204-020-09622-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-020-09622-x

Navigation