Skip to main content
Log in

Distribution Patterns of nirS-Encoding and nirK-Encoding Denitrifiers in the Surface Sediment of the Pearl River Estuary

  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The abundance and community structure of nirS-encoding and nirK-encoding denitrifiers inhabiting the sediment of the Pearl River Estuary was examined with quantitative PCR and high-throughput MiSeq sequencing. The results indicated that the low-oxygen condition (around 4 mg/L) of the Pearl River Estuary was the suitable environment for the denitrifying bacterial growth, and the abundances of nirS-encoding and nirK-encoding denitrifier were both highest in station P3, while the diversity and evenness were highest in stations P2 and P4, respectively. In addition, gene abundance and diversity of nirS was higher than nirK, which indicated that the denitrifying potential of nirS-encoding denitrifiers were significantly greater than that of nirK-encoding denitrifiers (p < 0.05). The most dominant nirS-encoding denitrifiers present in the sediment samples belonged to the phylum Proteobacteria, followed by Chloroflexi. However, the dominant classes of Betaproteobacteria and Gammaproteobacteria showed obvious salinity heterogeneity along the Pearl River Estuary. Betaproteobacteria have a strong survival ability in oligohaline environments and Gammaproteobacteria were opposite. Additionally, the distribution of both Betaproteobacteria and Gammaproteobacteria positively correlated with TOC and \({\text{NO}}_{2}^{ - }.\) For nirK-encoding denitrifiers, the distribution of cluster A and cluster C also showed salinity heterogeneity; the former favored oligohaline environments and the latter were opposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abell, G.C.J., Revill, A.T., Smith, C., et al., Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary, ISME J., 2010, vol. 4, pp. 286–300.

    Article  CAS  PubMed  Google Scholar 

  2. Abell, G.C.J., Ross, D.J., Keane, J.P., et al., Nitrifying and denitrifying microbial communities and their relationship to nutrient fluxes and sediment geochemistry in the Derwent Estuary, Tasmania, Aquat. Microb. Ecol., 2013, vol. 70, pp. 63–75.

    Article  Google Scholar 

  3. Babbin, A.R., Keil, R.G., Devol, A.H., and Ward, B.B., Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean, Science, 2014, vol. 344, pp. 406–408.

    Article  CAS  PubMed  Google Scholar 

  4. Baker, B.H., Kröger, R., Brooks, J.P., et al., Investigation of denitrifying microbial communities within an agricultural drainage system fitted with low-grade weirs, Water Res., 2015, vol. 87, pp. 193–201.

    Article  CAS  PubMed  Google Scholar 

  5. Beman, J.M., Activity, abundance, and diversity of nitrifying Archaea and denitrifying bacteria in sediments of a subtropical estuary: Bahía del Tóbari, Mexico, Estuaries Coasts, 2014, vol. 37, pp. 1343–1352.

    Article  CAS  Google Scholar 

  6. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: A flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, pp. 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braker, G., Zhou, J., Wu, L., et al., Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2096–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coyne, M.S., Arunakumari, A., Averill, B.A., and Tiedje, J.M., Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria, Appl. Environ. Microbiol., 1989, vol. 55, pp. 2924–2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai, M., Guo, X., Zhai, W., et al., Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought, Mar. Chem., 2006, vol. 102, pp. 159–169.

    Article  CAS  Google Scholar 

  10. Fish, J.A., Chai, B., Wang, Q., et al., FunGene: the functional gene pipeline and repository, Front. Microbiol., 2013, vol. 4, art. ID 291. https://doi.org/10.3389/fmicb.2013.00291

    Article  PubMed  PubMed Central  Google Scholar 

  11. Francis, C.A., O’Mullan, G.D., Cornwell, J.C., and Ward, B.B., Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary, Front. Microbiol., 2013, vol. 4, art. ID 237. https://doi.org/10.3389/fmicb.2013.00237

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao, J., Hou, L., Zheng, Y., et al., nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 8573–8582.

    Article  CAS  PubMed  Google Scholar 

  13. Gao, M., Liu, J., Qiao, Y., et al., Diversity and abundance of the denitrifying microbiota in the sediment of Eastern China Marginal Seas and the impact of environmental factors, Microb. Ecol., 2017, vol. 73, pp. 602–615.

    Article  CAS  PubMed  Google Scholar 

  14. GB/T 12763.4-2007 Specifications for Oceanographia Curvey—Part 4: Survey of Chemical Parameters in Sea Water, Beijing: Standards Press of China, 2007, pp. 109–117.

  15. Giles, E.M., Daniell, J.T., and Baggs, E.M., Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community, Soil Biol. Biochem., 2017, vol. 106, pp. 90–98.

    Article  CAS  Google Scholar 

  16. Glockner, A.B., Jüngst, A., and Zumft, W.G., Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd1-free background (NirS) of Pseudomonas stutzeri,Arch. Microbiol., 1993, vol. 160, pp. 18–26.

    CAS  PubMed  Google Scholar 

  17. Guo, X., Dai, M., Zhai, W., et al., CO2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China, J. Geophys. Res., 2009, vol. 114, art. ID G03013. https://doi.org/10.1029/2008JG000905

    Article  CAS  Google Scholar 

  18. Hallin, S. and Lindgren, P.-E., PCR detection of genes encoding nitrite reductase in denitrifying bacteria, Appl. Environ. Microbiol., 1999, vol. 65, pp. 1652–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He, B., Dai, M., Zhai, W., et al., Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: A synthesis based on multiple year observations during 2000–2008, Mar. Chem., 2014, vol. 167, pp. 13–24.

    Article  CAS  Google Scholar 

  20. He, T. and Zhang, X., Characterization of bacterial communities in deep-sea hydrothermal vents from three oceanic regions, Mar. Biotechnol., 2016, vol. 18, pp. 232–241.

    Article  CAS  Google Scholar 

  21. Huang, S., Chen, C., and Jaffé, P.R., Seasonal distribution of nitrifiers and denitrifiers in urban river sediments affected by agricultural activities, Sci. Total Environ., 2018, vol. 642, pp. 1282–1291.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, S., Chen, C., Wu, Y., et al., Characterization of depth-related bacterial communities and their relationships with the environmental factors in the river sediments, World J. Microbiol. Biotechnol., 2011, vol. 27, pp. 2655–2664.

    Article  CAS  Google Scholar 

  23. Huang, X.P., Huang, L.M., and Yue, W.Z., The characteristics of nutrients and eutrophication in the Pearl River estuary, South China, Mar. Pollut. Bull., 2003, vol. 47, pp. 30–36.

    Article  CAS  PubMed  Google Scholar 

  24. Ibekwe, A.M., Ma, J., Murinda, S., and Reddy, G.B., Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste, Sci. Total Environ., 2016, vol. 544, pp. 68–76.

    Article  CAS  PubMed  Google Scholar 

  25. Keeney, D.R. and Nelson, D.W., Inorganic forms of nitrogen, in Methods of Soil Analysis, part 2: Chemical and Microbiological Properties, Madison, Wis.: Am. Soc. Agron., 1982, pp. 643–698.

  26. Kim, H., Bae, H.-S., Reddy, K.R., and Ogram, A., Distributions, abundance and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary, Water Res., 2016, vol. 106, pp. 51–61.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J.A. and Francis, C.A., Spatiotemporal characterization of San Francisco Bay denitrifying communities: A comparison of nirK and nirS diversity and abundance, Microb. Ecol., 2016, vol. 73, pp. 271–284.

    Article  PubMed  CAS  Google Scholar 

  28. Li, D., Liu, X., Liu, Z., and Zhao, X., Variations in total organic carbon and acid-volatile sulfide distribution in surface sediments from Luan River Estuary, China, Environ. Earth Sci., 2016, vol. 75, art. ID 1073. https://doi.org/10.1007/s12665-016-5873-1

    Article  CAS  Google Scholar 

  29. Li, F., Li, M., Shi, W., et al., Distinct distribution patterns of proteobacterial nirK- and nirS-type denitrifiers in the Yellow River estuary, China, Can. J. Microbiol., 2017, vol. 63, pp. 708–718.

    Article  CAS  PubMed  Google Scholar 

  30. Li, J., Jiang, X., Li, G., et al., Distribution of picoplankton in the northeastern South China Sea with special reference to the effects of the Kuroshio intrusion and the associated mesoscale eddies, Sci. Total Environ., 2017, vol. 589, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Li, X., Tang, C., Cao, Y., and Li, X., Carbon, nitrogen and sulfur isotopic features and the associated geochemical processes in a coastal aquifer system of the Pearl River Delta, China, J. Hydrol., 2019, vol. 575, pp. 986–998.

    Article  CAS  Google Scholar 

  32. Li, Y., Williams, I., Xu, Z., et al., Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs), Appl. Energy, 2016, vol. 163, pp. 352–360.

    Article  CAS  Google Scholar 

  33. Lin, H., Dai, M., Kao, S.-J., et al., Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China, Mar. Chem., 2016, vol. 182, pp. 14–24.

    Article  CAS  Google Scholar 

  34. Liu, W., Yao, L., Jiang, X., et al., Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities, Sci. Total Environ., 2018, vols. 616–617, pp. 978–987.

    Article  PubMed  CAS  Google Scholar 

  35. Liu, X., Hu, H.-W., Liu, Y.-R., et al., Bacterial composition and spatiotemporal variation in sediments of Jiaozhou Bay, China, J. Soil Sediments, 2015, vol. 15, pp. 732–744.

    Article  CAS  Google Scholar 

  36. Logares, R., Bråte, J., Bertilsson, S., et al., Infrequent marine–freshwater transitions in the microbial world, Trends Microbiol., 2009, vol. 17, pp. 414–422.

    Article  CAS  PubMed  Google Scholar 

  37. Long, X.-E., Shen, J.-P., Wang, J.-T., et al., Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance, J. Soils Sediments, 2017, vol. 17, pp. 384–392.

    Article  CAS  Google Scholar 

  38. Magoč , T. and Salzberg, S.L., FLASH: Fast length adjustment of short reads to improve genome assemblies, Bioinformatics, 2011, vol. 27, pp. 2957–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, Z., Xu, J., Huang, X., et al., Relationship between nutrients and plankton biomass in the turbidity maximum zone of the Pearl River Estuary, J. Environ. Sci., 2017, vol. 57, pp. 72–84.

    Article  Google Scholar 

  40. Shrewsbury, L.H., Smith, J.L., Huggins, D.R., et al., Denitrifier abundance has a greater influence on denitrification rates at larger landscape scales but is a lesser driver than environmental variables, Soil Biol. Biochem., 2016, vol. 103, pp. 221–231.

    Article  CAS  Google Scholar 

  41. Smith, J.M., Mosier, A.C., and Francis, C.A., Spatiotemporal relationships between the abundance, distribution, and potential activities of ammonia-oxidizing and denitrifying microorganisms in intertidal sediment, Microb. Ecol., 2015, vol. 69, pp. 13–24.

    Article  CAS  PubMed  Google Scholar 

  42. Stelzer, R.S., Scott, J.T., Bartsch, L.A., and Parr, T.B., Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment, Biogeochemistry, 2014, vol. 119, pp. 387–402.

    Article  CAS  Google Scholar 

  43. Tan, E., Zou, W., Jiang, X., et al., Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China, Sci. Total Environ., 2019, vol. 648, pp. 508–517.

    Article  CAS  PubMed  Google Scholar 

  44. Throbäck, I.N., Enwall, K., Jarvis, Å., and Hallin, S., Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE, FEMS Microbiol. Ecol., 2004, vol. 49, pp. 401–417.

  45. Wang, C., Zhu, G., Wang, Y., et al., Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake, J. Environ. Sci., 2013, vol. 25, pp. 44–52.

    Article  CAS  Google Scholar 

  46. Wu, H., Wang, X., He, X., et al., Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland, Sci. Total Environ., 2017, vol. 598, pp. 697–703.

    Article  CAS  PubMed  Google Scholar 

  47. Yang, A., Zhang, X., Agogué, H., et al., Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats, Ann. Microbiol., 2015, vol. 65, pp. 879–890.

    Article  CAS  Google Scholar 

  48. Yi, N., Gao, Y., Zhang, Z., et al., Response of spatial patterns of denitrifying bacteria communities to water properties in the stream inlets at Dianchi Lake, China, Int. J. Genomics, 2015, vol. 9, art. ID 572121. https://doi.org/10.1155/2015/572121

    Article  CAS  Google Scholar 

  49. Zhang, M., Luo, P., Liu, F., et al., Nitrogen removal and distribution of ammonia-oxidizing and denitrifying genes in an integrated constructed wetland for swine wastewater treatment, Ecol. Eng., 2017, vol. 104, pp. 30–38.

    Article  Google Scholar 

  50. Zhang, Y., Zhao, Z., Dai, M., et al., Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea, Mol. Ecol., 2014, vol. 23, pp. 2260–2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, Y., Hou, L., Liu, M., et al., Diversity, abundance, and distribution of nirS-harboring denitrifiers in intertidal sediments of the Yangtze estuary, Microb. Ecol., 2015, vol. 70, pp. 30–40.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, X., Burger, M., Doane, T.A., and Horwath, W.R., Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 6328–6333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zumft, W.G., Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 533–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (grant nos. 2018YFD0900704 and 2018YFD0900703), the National Natural Science Foundation of China (grant no. 31900094), Central Public-interest Scientific Institution Basal Research Fund (CAFS, grant no. 2019ZD0102), Financial Fund of the Ministry of Agriculture, P.R. China (no. NFZX2018), 2018 Special Project for Economic Development of Guangdong (grant no. GDME-2018B001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhui Qi.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Huang, H., Qi, Z. et al. Distribution Patterns of nirS-Encoding and nirK-Encoding Denitrifiers in the Surface Sediment of the Pearl River Estuary. Russ J Mar Biol 45, 453–463 (2019). https://doi.org/10.1134/S1063074019060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074019060099

Keywords:

Navigation