Skip to main content
Log in

Fayans Functional: Self-Consistent Description of Isospin Excitations

  • NUCLEI
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The energy density functional proposed earlier by Fayans and his coauthors is modified in such a way as to apply it in fully self-consistent calculations of isobaric analog resonances (IAR) in nuclei featuring pairing. The continuum quasiparticle random-phase approximation is used. Limits on the parameters of screening of exchange Coulomb interaction are deduced from a systematic analysis of binding energies of isobaric doublets and transition energies for isobaric triplets in mirror nuclei. A comparison with experimental data shows that the IAR energies for neutron-rich tin and lead isotopes involving fully developed pairing are described better on the basis of the new functional DF3-f than on the basis of self-consistent calculations performed with the DC3\(\ast\) relativistic functional or with the SAMi Skyrme functional. The DF3-f functional is applied to calculating the properties of IARs in ruthenium, palladium, and cadmium isotopes featuring pairing in both neutron and proton subsystems, as well as to calculating similar properties in the chain of \(N=82\) isotones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  2. W. Kohn and L. G. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  3. Energy Density Functional Methods for Atomic Nuclei, Ed. by N. Schunck (IOP, Bristol, 2019).

    Google Scholar 

  4. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, et al., Nature (London, U.K.) 502, 207 (2013).

    Article  ADS  Google Scholar 

  5. R. F. Garcia-Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nat. Phys. 12, 594 (2016).

    Article  Google Scholar 

  6. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  7. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  8. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  9. V. A. Khodel and E. E. Saperstein, Phys. Rept. 92, 183 (1982).

    Article  ADS  Google Scholar 

  10. A. Bulgac, M. McNeil Forbes, Shi Jin, R. Navarro Perez, and N. Schunck, Phys. Rev. C 97, 044313 (2018).

  11. M. Baldo, L. M. Robledo, P. Schuck, and X. Vinas, Phys. Rev. C 95, 014318 (2017).

  12. P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).

  13. N. Auerbach, Phys. Rep. 98, 273 (1983).

    Article  ADS  Google Scholar 

  14. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 74, 1277 (2011).

    Article  Google Scholar 

  15. S. G. Rohoziński, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. C 81, 014313 (2010).

  16. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. 69, 054303 (2004).

  17. B. L. Birbrair, Nucl. Phys. A 108, 449 (1968).

    Article  ADS  Google Scholar 

  18. H. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett. 101, 122502 (2008).

  19. I. N. Borzov and S. A. Fayans, Preprint-FEI-1129 (1980).

  20. N. I. Pyatov and S. A. Fayans, Sov. J. Part. Nucl. 14, 401 (1983).

    Google Scholar 

  21. I. N. Borzov, E. L. Trykov, and S. A. Fayans, Sov. J. Nucl. Phys. 52, 627 (1990).

    Google Scholar 

  22. G. Colò, H. Sagawa, N. Van Giai, P. F. Bortignon, and T. Suzuki, Phys. Rev. C 57, 3049 (1998).

    Article  ADS  Google Scholar 

  23. V. A. Rodin and M. H. Urin, Phys. At. Nucl. 66, 2128 (2003).

    Article  Google Scholar 

  24. S. A. Fayans, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 568, 523 (1994).

    Article  ADS  Google Scholar 

  25. X. Roca-Maza, L.-G. Cao, G. Colò, and H. Sagawa, Phys. Rev. C 94, 044313 (2016).

  26. P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995)

    Article  ADS  Google Scholar 

  27. J. F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A 428, 25 (1984).

    Article  ADS  Google Scholar 

  28. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 82 (6) (2019, in press).

  29. A. Bulgac and V. R. Shaginyan, Nucl. Phys. A 601, 103 (1996).

    Article  ADS  Google Scholar 

  30. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 79, 1030 (2016).

    Article  Google Scholar 

  31. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967, transl. 1st ed).

  32. J. A. Nolen, Jr. and J. P. Schiffer, Ann. Rev. Nucl. Sci. 19, 471 (1969).

    Article  ADS  Google Scholar 

  33. https://www.nndc.bnl.gov/nudat2.

  34. M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).

    Article  Google Scholar 

  35. K. Yako, M. Sasano, K. Miki, H. Sakai, M. Dozono, D. Frekers, M. B. Greenfield, K. Hatanaka, E. Ihara, M. Kato, T. Kawabata, H. Kuboki, Y. Maeda, H. Matsubara, K. Muto, and S. Noji, Phys. Rev. Lett. 103, 012503 (2009).

  36. R. Pham, J. Jänecke, D. A. Roberts, M. N. Harakeh, G. P. A. Berg, S. Chang, J. Liu, E. J. Stephenson, B. F. Davis, H. Akimune, and M. Fujiwara, Phys. Rev. C 51, 526 (1995).

    Article  ADS  Google Scholar 

  37. Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, and J. Meng, Phys. Rev. C 95, 044301 (2017).

  38. D. J. Horen, C. D. Goodman, C. C. Foster, C. A. Goulding, M. B. Greenfield, J. Rapaport, D. E. Bainum, E. Sugarbaker, T. G. Masterson, F. Petrovich, and W. G. Love, Phys. Lett. B 95, 27 (1980);

    Article  ADS  Google Scholar 

  39. D. J. Horen, C. D. Goodman, C. C. Foster, C. A. Goulding, M. B. Greenfield, J. Rapaport, D. E. Bainum, E. Sugarbaker, T. G. Masterson, F. Petrovich, and W. G. Love, Phys. Lett. B 95, 27 (1980); Phys. Rev. B 67, 055802 (2003).

  40. Y. Yasuda et al., Phys. Rev. Lett. 121, 132501 (2018).

  41. P. Puppe, D. Frekers, T. Adachi, H. Akimune, N. Aoi, B. Bilgier, H. Ejiri, H. Fujita, Y. Fujita, M. Fujiwara, E. Ganioğlu, M. N. Harakeh, K. Hatanaka, M. Holl, H. C. Kozer, J. Lee, et al., Phys. Rev. C 84, 051305(R) (2011).

  42. J. Jänecke, F. D. Becchetti, W. S. Gray, R. S. Tickle, and E. R. Sugarbacker, Nucl. Phys. A 402, 262 (1983).

    Article  ADS  Google Scholar 

  43. G. V. Kolomiytsev, M. L. Gorelik, and M. H. Urin, Eur. Phys. J. A 54, 228 (2018).

    Article  ADS  Google Scholar 

  44. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and N. Van Giai, Phys. Rev. C 90, 044320 (2014).

  45. J. Neisenberg, J. Lichtenstadt, C. N. Papanicolas, and J. S. McCarthy, Phys. Rev. C 25, 2292 (1982).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by Russian Foundation for Basic Research (project no. 18-02-00670).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. N. Borzov or S. V. Tolokonnikov.

Ethics declarations

One of the days of the International Symposium Infinite and Finite Nuclear Matter (INFINUM) at Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, March 20–22, 2019, was dedicated to the memory of the late professor E.E. Saperstein. We are grateful to the organizing committee and all participants for discussions on the problems associated with his studies. We cherish fond memory of Professor Saperstein, who had been our coauthor, colleague, and friend for many years.

Additional information

Dedicated to the blessed memory of E.E. Saperstein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, I., Tolokonnikov, S. Fayans Functional: Self-Consistent Description of Isospin Excitations. Phys. Atom. Nuclei 83, 24–32 (2020). https://doi.org/10.1134/S1063778820010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820010044

Navigation