Skip to main content
Log in

New Experiment NEWSdm for Direct Searches for Heavy Dark Matter Particles

  • ELEMENTARY PARTICLES AND FIELDS
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

NEWSdm [Nuclear Emulsions for WIMP (weakly interacting massive particles) Search—directional measurement] is a new international experiment in which a photoemulsion target is used for a direct detection of dark-matter particles. In this experiment, the detection method is based on fixing the directions of trajectories of recoil nuclei originating from the elastic interaction of target nuclei with dark-matter particles from the galactic halo. This distinguishes NEWSdm from standard low-background experiments aimed at searches for dark-matter particles and based on an analysis of annual modulations of the number of detected events. The detector, which is simultaneously a target, is a block of nuclear emulsions that have a uniquely high spatial resolution owing to the reduction of the size of AgBr grains to about \(10\) nm. A resolution on this order of magnitude permits directional searches for dark-matter particles in cosmic space even at energies of recoil nuclei not higher than 30 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. R. Massey, T. Kitching, and J. Richard, Rep. Prog. Phys. 73, 086901 (2010).

  2. Z. Rezaei, arXiv: 1906.08648, Can. J. Phys. (2019, in press).

  3. D. Maity and P. Saha, Phys. Rev. D 98, 103525 (2018).

  4. A. Aleksandrov, A. Anokhina, T. Asada, D. Bender, I. Bodnarchuk, A. Buonaura, S. Buontempo, M. Chernyavskii, A. Chukanov, L. Consiglio, N. D’Ambrosio, G. De Lellis, M. De Serio, A. Di Crescenzo, N. Di Marco, S. Dmitrievski, et al., LNGS-LOI 48/15; arxiv.org/abs/1604.04199.

  5. M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).

    Article  ADS  Google Scholar 

  6. Particle Dark Matter, Ed. by G. Bertone (Cambridge Univ. Press, Cambridge, 2010), p. 488.

    MATH  Google Scholar 

  7. L. Baudis, Ann. Phys. (Berlin) 528, 74 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. A. Ryabov, V. A. Tsarev, and A. M. Tskhovrebov, Phys. Usp. 51, 1091 (2008).

    Article  ADS  Google Scholar 

  9. H. Araújo, WIMP Searches with Liquid Xenon: ZEPLIN, LUX and LZ, HEP Seminar (Oxford Univ. Press, Oxford, 2013).

  10. R. Bernabei, Int. J. Mod. Phys. A 31, 1642001 (2016).

  11. R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, V. Caracciolo, R. Cerulli, C. J. Dai, A. d’Angelo, A. Di Marco, H. L. He, A. Incicchitti, X. H. Ma, A. Mattei, V. Merlo, F. Montecchia, X. D. Sheng, and Z. P. Ye, Nucl. Phys. At. Energy 19, 307 (2018).

    Article  ADS  Google Scholar 

  12. CoGeNT Collab. (C. E. Aalseth et al.), Phys. Rev. Lett. 106, 131301 (2011).

  13. LUX Collab. (D. S. Akerib et al.), Phys. Rev. Lett. 118, 021303 (2017).

  14. PandaX-II Collab. (A. Tan et al.), Phys. Rev. Lett. 117, 121303 (2016).

  15. XENON Collab. (E. Aprile et al.), Phys. Rev. Lett. 119, 181301 (2017).

  16. J. Va’vra, Phys. Lett. B 735, 181 (2014).

    Article  ADS  Google Scholar 

  17. N. Yu. Agafonova, V. V. Boyarkin, V. L. Dadykin, E. A. Dobrynina, R. I. Enikeev, G. T. Zatsepin, A. S. Mal’gin, O. G. Ryazhskaya, V. G. Ryasnyi, I. R. Shakir’yanova, V. F. Yakushev (on behalf of LVD-Collab.), Bull. Russ. Acad. Sci.: Phys. 75, 427 (2011).

    Article  Google Scholar 

  18. T. Nakamura, A. Ariga, T. Ban, Takako Fukuda, Tutomu Fukuda, T. Fujioka, T. Furukawa, K. Hamada, H. Hayashi, S. Hiramatsu, K. Hoshino, J. Kawada, N. Koike, M. Komatsu, H. Matsuoka, S. Miyamoto, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 556, 80 (2006).

    Google Scholar 

  19. T. Katsuragawa, T. Naka, T. Asada, M. Yoshimoto, K. Hakamata, and M. Ishikawa, J. Phys.: Conf. Ser. 469, 012004 (2013).

  20. T. Asada (on behalf of the NEWSdm Collab.), EPJ Web Conf. 182, 02006 (2018).

  21. T. Asada, T. Naka, K. I. Kuwabara, and M. Yoshimoto, Prog. Theor. Exp. Phys. 2017, 063H01 (2017).

  22. M. Kimura and T. Naka, Nucl. Instrum. Methods Phys. Res., Sect. A 680, 12 (2012).

    Google Scholar 

  23. T. Naka, T. Asada, T. Yoshimoto, T. Katsuragawa, Y. Suzuki, Y. Terada, A. Takeuchi, K. Uesugi, Y. Tawara, A. Umemoto, and M. Kimura, Rev. Sci. Instrum. 86, 073701 (2015).

  24. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, Chem. Soc. Rev. 43, 3426 (2014).

    Article  Google Scholar 

  25. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, Appl. Phys. Lett. 80, 1826 (2002).

    Article  ADS  Google Scholar 

  26. NEWSdm Collab. (N. Agafonova et al.), Eur. Phys. J. C 78, 578 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Gorbunov or N. S. Konovalova.

Additional information

(On behalf of the NEWSdm Collaboration)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunov, S.A., Konovalova, N.S. New Experiment NEWSdm for Direct Searches for Heavy Dark Matter Particles. Phys. Atom. Nuclei 83, 83–91 (2020). https://doi.org/10.1134/S1063778820010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820010056

Navigation