Skip to main content
Log in

Maxima of the Stresses in the Longitudinal Pochhammer—Chree Waves

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The article presents the calculation of stress fields that arise in cylindrical rods of circular cross section in the case of Pochhammer–Chree waves. Examples of calculating the fields for the four lowest wave modes in a steel rod for two cases of phase velocities are considered. The structures of the isostat of the principal stresses in the longitudinal section of the rod are constructed and considered. The fields of the first principal stress and von Mises stress are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pochhammer, “Ueber die Fortpflanzungsgeschwindigkeiten Kleiner Schwingungen in Einem Unbegrenzten Isotropen Kreiscylinder,” J. Reine Angew. Math. 81, 324–336 (1876).

    MathSciNet  MATH  Google Scholar 

  2. C. Chree, “Longitudinal Vibrations of a Circular Bar,” Quart. J. Pure Appl. Math. 21, 287–298 (1886).

    MATH  Google Scholar 

  3. C. Chree, “The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates, their Solutions and Applications,” Trans. Cambridge Phil. Soc. 14, 250–309 (1889).

    ADS  Google Scholar 

  4. G. S. Field, “Velocity of Sound in Cylindrical Rods,” Can. J. Res. 5, 619–624 (1931).

    Article  Google Scholar 

  5. S. K. Shear and A. B. Focke, The Dispersion of Supersonic Waves in Cylindrical Rods of Polycrystalline Silver, Nickel, and Magnesium,” Phys. Rev. 57, 532–537 (1940).

    Article  ADS  Google Scholar 

  6. G. E. Hudson, “Dispersion of Elastic Waves in Solid Circular cylinders,” Phys. Rev. 63, 46–51 (1943).

    Article  ADS  Google Scholar 

  7. H. Kolsky, Stress Waves in Solids (Clarenden Press, Oxford, 1953; Izd. Inostr. Lit., Moscow, 1955).

    MATH  Google Scholar 

  8. M. Redwood and J. Lamb, “On Propagation of High Frequency Compressional Waves in Isotropic Cylinders,” Proc. Phys. Soc. Section B. London. 70 (1), 136–143 (1957).

    Article  ADS  Google Scholar 

  9. M. Onoe, H.D. McNiven, and R. D. Mindlin, “Dispersion of Axially Symmetric Waves in Elastic Rods,” Trans. AS ME J. Appl. Mech. 29, 729–734 (1962).

    Article  ADS  Google Scholar 

  10. J. R. Hutchinson and C. M. Percival, “Higher Modes of Longitudinal Wave Propagation in thin Rod,” J. Acoust. Soc. Amer. 44, 1204–1210 (1968).

    Article  ADS  Google Scholar 

  11. J. Zemanek, “An Experimental and Theoretical Investigation of Elastic Wave Propagation in a Cylinder,” J. Acoust. Soc. Amer. 51, 265–283 (1972).

    Article  ADS  Google Scholar 

  12. K. F. Graff, Wave Motion in Elastic Solids (Dover, New York, 1991).

    MATH  Google Scholar 

  13. H. N. Abramson, “Flexural Waves in Elastic Beams of Circular Cross Section,” J. Acoust. Soc. Amer. 29, 1284–1286 (1957).

    Article  Google Scholar 

  14. Y.-H. Pao and R. D. Mindlin, “Dispersion of Flexural Waves in an Elastic, Circular Cylinders,” Trans. AS ME. J. Appl. Mech. 27, 513–520 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. A. Kovalev and Yu. N. Radaev, Wave Problems of Field Theory and Thermomechanics (Izd-vo Saratov Univ., Saratov, 2010) [in Russian].

    Google Scholar 

  16. A. O. Vatul’yan and V. O. Yurov, “Wave Processes in a Hollow Cylinder in an Inhomogeneous Prestress Field,” Prikl. Mekh. Tekh. Fiz. 57(4), 182–191 (2016) [J. Appl. Mech. Techn. Phys. (Engl. Transl.) 57(4), 731–739(2016)].

    MathSciNet  MATH  Google Scholar 

  17. W. Zhou, et al., “Guided Torsional Wave Generation of a Linear In-Plane Shear Piezoelectric Array in Metallic Pipes,” Ultrasonics 65, 69–77 (2016).

    Article  Google Scholar 

  18. O. V. Murav’eva, S. V. Len’kov, and S. A. Murashov, “Torsional Waves Excited by Electromagnetic–Acoustic Transducers During Guided-Wave Acoustic Inspection of Pipelines,” Acust. Zh. 62(1), 117–124 (2016) [Acoust. Phys. (Engl. Transl.) 62(1), 117-124 (2016)].

    Google Scholar 

  19. D. Garcia-Sanchez, et al., “Acoustic Confinement in Superlattice Cavities,” Phys. Rev. A. 94, 033813–1–033813–6 (2016).

    Article  ADS  Google Scholar 

  20. R. Othman, “A Fractional Equation to Approximate Wave Dispersion Relation in Elastic Rods,” Strain. 53(4), e12228, 1–10(2017).

    Article  Google Scholar 

  21. Zh. Li, L. Jing, and R. Murch, “Propagation of Monopole Source Excited Acoustic Waves in a Cylindrical High-Density Polyethylene Pipeline,” J. Acoust. Soc. Amer. 142, 3564–3579 (2017).

    Article  ADS  Google Scholar 

  22. B. Zima and M. Rucka, “Guided Ultrasonic Waves for Detection of Debonding in Bars Partially Embedded in Grout,” Constr. Build. Mat. 168, 124–142(2018).

    Article  Google Scholar 

  23. A. V. Ilyashenko and S.V. Kuznetsov, “Pochhammer–Chree Waves: Polarization of the Axially Symmetric Modes,” Arch. Appl. Mech. 88(8), 1385–1394 (2018).

    Article  ADS  Google Scholar 

  24. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Fizmatlit, Moscow, 1962) [in Russian].

    Google Scholar 

  25. G. N. Watson, Theory of Bessel Functions [Russian Translation], (Inostr. Lit., Moscow, 1949).

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor S. V. Kuznetsov and Professor Yu. N. Radayev for valuable advice. This work was supported by the RAS Program I.2.27 “Fundamental Problems of Solving Complex Practical Problems Using Supercomputers”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Mokryakov.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 5, pp. 86–103.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokryakov, V.V. Maxima of the Stresses in the Longitudinal Pochhammer—Chree Waves. Mech. Solids 54, 1063–1075 (2019). https://doi.org/10.3103/S0025654419070070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419070070

Keywords

Navigation