Skip to main content

Advertisement

Log in

Equality in the logarithmic Sobolev inequality

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We investigate the rigidity problem for the logarithmic Sobolev inequality on weighted Riemannian manifolds satisfying \(\mathrm {Ric}_{\infty } \ge K>0\). Assuming that equality holds, we show that the 1-dimensional Gaussian space is necessarily split off, similarly to the rigidity results of Cheng–Zhou on the spectral gap as well as Morgan on the isoperimetric inequality. The key ingredient of the proof is the needle decomposition method introduced on Riemannian manifolds by Klartag. We also present several related open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In: Proceedings of the International Congress of Mathematician (2018)

  2. Ambrosio, L., Brué, E., Semola, D.: Rigidity of the \(1\)-Bakry–Émery inequality and sets of finite perimeter in RCD spaces. Preprint (2018). arXiv:1812.07890

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  Google Scholar 

  4. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On logarithmic Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26, 43–100 (2001)

    Article  Google Scholar 

  5. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Cham (2014)

    Book  Google Scholar 

  6. Balogh, Z.M., Kristály, A.: Equality in Borell–Brascamp–Lieb inequalities on curved spaces. Adv. Math. 339, 453–494 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bangert, V.: Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten (German). J. Reine Angew. Math. 307(308), 309–324 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Barchiesi, M., Brancolini, A., Julin, V.: Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality. Ann. Probab. 45, 668–697 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bobkov, S.G., Gozlan, N., Roberto, C., Samson, P.-M.: Bounds on the deficit in the logarithmic Sobolev inequality. J. Funct. Anal. 267, 4110–4138 (2014)

    Article  MathSciNet  Google Scholar 

  10. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  11. Carlen, E.: Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101, 194–211 (1991)

    Article  MathSciNet  Google Scholar 

  12. Cavalletti, F., Maggi, F., Mondino, A.: Quantitative isoperimetry à la Levy–Gromov. Comm. Pure Appl. Math. arXiv:1707.04326 (to appear)

  13. Cavalletti, F., Mondino, A.: Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds. Invent. Math. 208, 803–849 (2017)

    Article  MathSciNet  Google Scholar 

  14. Cavalletti, F., Mondino, A.: Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds. Geom. Topol. 21, 603–645 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cheng, X., Zhou, D.: Eigenvalues of the drifted Laplacian on complete metric measure spaces. Commun. Contemp. Math. 19 , 1650001, 17 pp (2017)

  16. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: On the isoperimetric deficit in Gauss space. Amer. J. Math. 133, 131–186 (2011)

    Article  MathSciNet  Google Scholar 

  17. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, 219–257 (2001)

    Article  MathSciNet  Google Scholar 

  18. Cordero-Erausquin, D., McCann, R .J., Schmuckenschläger, M.: Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac. Sci. Toulouse Math. 15(6), 613–635 (2006)

    Article  MathSciNet  Google Scholar 

  19. Courtade, T.A., Fathi, M.: Stability of the Bakry–Émery theorem on \({\mathbb{R}}^n\). Preprint (2018). arXiv:1807.09845

  20. Eldan, R.: A two-sided estimate for the Gaussian noise stability deficit. Invent. Math. 201, 561–624 (2015)

    Article  MathSciNet  Google Scholar 

  21. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  Google Scholar 

  22. Fathi, M., Indrei, E., Ledoux, M.: Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete Contin. Dyn. Syst. 36, 6835–6853 (2016)

    Article  MathSciNet  Google Scholar 

  23. Figalli, A., Gigli, N.: Local semiconvexity of Kantorovich potentials on non-compact manifolds. ESAIM Control Optim. Calc. Var. 17, 648–653 (2011)

    Article  MathSciNet  Google Scholar 

  24. Gigli, N., Ketterer, C., Kuwada, K., Ohta, S.: Rigidity for the spectral gap on \({{\rm RCD}}(K,\infty )\)-spaces. Amer. J. Math. arXiv:1709.04017 (to appear)

  25. Klartag, B.: Needle decompositions in Riemannian geometry. Mem. Amer. Math. Soc. 249 no. 1180 (2017)

  26. Ledoux, M.: On an integral criterion and hypercontractivity of diffusion semigroups and extremal functions. J. Funct. Anal. 105, 444–465 (1992)

    Article  MathSciNet  Google Scholar 

  27. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  28. Mai, C.H.: On Riemannian manifolds with positive weighted Ricci curvature of negative effective dimension. Kyushu J. Math. arXiv:1704.06091 (to appear)

  29. Mai, C.H.: Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds. Geom. Dedicata. arXiv:1712.06904 (to appear)

  30. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)

    Article  MathSciNet  Google Scholar 

  31. Morgan, F.: Geometric Measure Theory. A Beginner’s Guide, 5th edn. Elsevier/Academic Press, Amsterdam (2016)

    MATH  Google Scholar 

  32. Mossel, E., Neeman, J.: Robust dimension free isoperimetry in Gaussian Space. Ann. Probab. 43, 971–991 (2015)

    Article  MathSciNet  Google Scholar 

  33. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211–249 (2009)

    Article  MathSciNet  Google Scholar 

  34. Ohta, S.: Splitting theorems for Finsler manifolds of nonnegative Ricci curvature. J. Reine Angew. Math. 700, 155–174 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Ohta, S.: Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Jpn 70, 651–693 (2018)

    Article  MathSciNet  Google Scholar 

  36. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  Google Scholar 

  37. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Commun. Pure Appl. Math. 58, 923–940 (2005)

    Article  MathSciNet  Google Scholar 

  38. Sturm, K.-T.: Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84, 149–168 (2005)

    Article  MathSciNet  Google Scholar 

  39. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  40. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  Google Scholar 

  41. Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

SO was supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 15K04844, 17H02846. AT was supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 15K17536, 16KT0132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to the memory of Kazumasa Kuwada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohta, Si., Takatsu, A. Equality in the logarithmic Sobolev inequality. manuscripta math. 162, 271–282 (2020). https://doi.org/10.1007/s00229-019-01134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01134-9

Mathematics Subject Classification

Navigation