Skip to main content
Log in

On the rates of convergence in weak limit theorems for geometric random sums of the strictly stationary sequence of m-dependent random variables

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

A Correction to this article was published on 01 April 2020

This article has been updated

Abstract

In this paper, we consider a strictly stationary sequence of m-dependent random variables through a compatible sequence of independent and identically distributed random variables by the moving averages processes. Using the Zolotarev distance, we estimate some rates of convergence in the weak limit theorems for normalized geometric random sums of the strictly stationary sequence of m-dependent random variables. The obtained results are extensions and generalizations of several known results on geometric random sums of independent and identically distributed random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 06 June 2020

    In the metadata of the article on SpringerLink, the corresponding author is incorrect. The corresponding author is Tran Loc Hung (tlhung@ufm.edu.vn; tlhungvn@gmail.com)

References

  1. S. Belloni, Proximity of probability distributions in terms of Fourier–Stieltjes transforms, Russ. Math. Surv., 71(6): 1021–1079, 2016.

    Article  MATH  Google Scholar 

  2. S. Belloni, An extension of central limit theorem for randomly indexed m-dependent random variables, Filomat, 31(14):4369–4377, 2017.

    Article  MathSciNet  Google Scholar 

  3. V. Čekanavičius, Approximation Methods in Probability, Springer, 2016.

  4. F. Daly, Compound geometric approximation under a failure rate constraint, J. Appl. Probab., 53:700–714, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  5. P.H. Diananda, The central limit theorem for m-dependent variables, Proc. Camb. Philos. Soc., 51(1):92–95, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  6. B.V. Gnedenko and V.Y. Korolev, Random summations: Limit theorems and Applications, CRC Press, New York, 1996.

    MATH  Google Scholar 

  7. L. Heinrich, A method for the derivation of limit theorems for sums of m-dependent random variables, Z. Wahrscheinlichkeitstheor. Verw. Geb., 60:501–515, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Heinrich, Non-uniform estimates and asymptotic expansions of the remainder in the central limit theorem for m-dependent random variables, Math. Nachr., 115:7–20, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Hoeffding and H. Robbins, The central limit theorem for dependent random variables, Duke Math. J., 15:773–780, 1948.

    Article  MathSciNet  MATH  Google Scholar 

  10. N.V. Huan, The Baum–Katz theorem for dependent sequences, Acta Math. Hung., 151(1):162–172, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  11. W.N. Hudson, H.G. Tucker, and T.A. Veeh, Limit distribution of sums of m-dependent Bernoulli random variables, Probab. Theory Relat. Fields, 82:9–17, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. T.L. Hung, On a probability metric based on Trotter operator, Vietnam J. Math., 35(1):21–32, 2007.

    MathSciNet  MATH  Google Scholar 

  13. T.L. Hung, On the rate of convergence in limit theorems for geometric sums, Southeast Asian J. Sci., 2(2):117–130, 2013.

    MATH  Google Scholar 

  14. I.A. Ibragimov, Some limit theorems for stationary processes, Teor. Veroyatn. Primen., 7:361–392, 1962 (in Russian).

    MathSciNet  Google Scholar 

  15. Ü. Işlak, Asymptotic results for random sums of dependent random variables, Stat. Probab. Lett., 109:22–29, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.R. Joseph and W. Michael, A more general central limit theorem form-dependent random variableswith unbounded m, Stat. Probab. Lett., 47:115–124, 2000.

    Article  MATH  Google Scholar 

  17. V. Kalashnikov, Geometric Sum: Bounds for Rare Events with Applications, Springer, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  18. L.B. Klebanov, Heavy tailed distributions, 2003, available from: https://www.researchgate.net/publication/273945464_Heavy_Tailed_Distributions.

  19. L.B. Klebanov,G.M.Maniya, and I.A.Melamed, Aproblem of Zolotarev and analogs of infinitely divisible and stable distributions in the scheme for summing a random number of random variables, Theory Probab. Appl., 29(4):791–794, 1984.

    Article  MATH  Google Scholar 

  20. S. Kotz, T.J. Kozubowski, and K. Podgórsky, The Laplace Distribution and Generalizations, Birkhäuser, Basel, 2001.

    Book  Google Scholar 

  21. V.M. Kruglov and V.Yu. Korolev, Limit Theorems for Random Sums, Moscow Univ. Press, Moscow, 1990.

    MATH  Google Scholar 

  22. S.M. Manou-Abi, Rate of convergence to alpha stable law using Zolotarev distance: Technical report, 2017, available from: https://hal.archives-ouvertes.fr/hal-01672804.

  23. S.A. Orey, Central limit theorems for m-dependent random variables, Duke Math. J., 25:543–546, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Peköz and A. Röllin, New rates for exponential approximation and the theorems of Rényi and Yaglom, Ann. Probab., 39(2):587–608, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. V.V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  26. B.L.S. Prakasa Rao and M. Sreehari, On the order of approximation in the random central limit theorem for m-dependent random variables, Probab. Math. Stat., 36(1):47–57, 2016.

    MathSciNet  MATH  Google Scholar 

  27. W. Rudin, Principles of Mathematical Analysis 3rd ed., McGraw-Hill, New York, 1976.

  28. E. Sandhya and R.N. Pillai, On geometric infinitely divisibility, Journal of the Kerala Statistical Association, 10:1–7, 1999.

    Google Scholar 

  29. E. Sandhya and R.N. Pillai, Renewal theory and geometric infinite divisibility, ProbStat. Models, 2:1–8, 2003.

    Google Scholar 

  30. Y. Shang, A central limit theorem for randomly indexed m-dependent random variables, Filomat, 26(4):713–717, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  31. A.A. Toda, Weak limit of the geometric sum of independent but not identically distributed random variables, 2012, arXiv:1111.1786v2.

  32. V.M. Zolotarev, Metric distances in spaces of random variables and their distributions, Math. USSR, Sb., 30(3):373–401, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  33. V.M. Zolotarev, Approximation of the distribution of sums of independent variables with values in infinitedimensional spaces, Teor. Veroyatn. Primen., 21(4):741–758, 1976 (in Russian).

    Google Scholar 

  34. V.M. Zolotarev, Probability metrics, Teor. Veroyatn. Primen., 28(2):264–287, 1983 (in Russian).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan TriKien.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported in part by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant 101.01-2010.02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, T.L., TriKien, P. On the rates of convergence in weak limit theorems for geometric random sums of the strictly stationary sequence of m-dependent random variables. Lith Math J 60, 173–188 (2020). https://doi.org/10.1007/s10986-020-09478-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-020-09478-6

MSC

Keywords

Navigation