Skip to main content
Log in

Carbon Isotope Evidence of Methanogenesis in Sediments of the Dal’nyaya Taiga Group (Lower Vendian of the Patom Basin, Siberia)

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The results of lithological, petrographic, and C–O isotope studies of various types of the diagenetic and postdiagenetic carbonate cement in silty mudstones, as well as coeval limestones, in postglacial deposits of the Dal’nyaya Taiga Group (Patom Basin, Siberia) are presented. Evidence of methane generation but not its anaerobic oxidation has been obtained. High δ13C (up to 14.9‰) values of the earliest carbonate cement generations in mudstones from the Barakun and Ura formations are related to extreme isotopic fractionation during the biogenic methanogenesis. The absence of isotopic signatures of the anaerobic oxidation of methane indicates its isolation during the subsequent reactions, suggesting the accumulation of gas hydrate compounds inside the sedimentary layers. Analysis of the distribution and correlation of δ180 and δ13C in the authigenic and sedimentary carbonates provides new arguments in favor of link of the Ediacaran global δ13C trend with epochs of the predominant accumulation of gas hydrate hydrocarbon compounds inside the deep-sea sedimentary strata and their subsequent anaerobic oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Barnes, R.O. and Goldberg, E.D., Methane production and consumption in anoxic marine sediments, Geology, 1976, vol. 4, pp. 297–300.

    Article  Google Scholar 

  2. Birgel, D., Meister, P., Lundberg, R., et al., Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites?, Geobiology, 2015, vol. 13, pp. 245–266.

    Article  Google Scholar 

  3. Boetius, A., Ravenschlag, K., Schubert, C.J., et al., A marine consortium apparently mediating anaerobic oxidation of methane, Nature, 2000, vol. 407, pp. 623–626.

    Article  Google Scholar 

  4. Borowski, W.S., Paull, C.K., and Ussler III, W., Marine pore fluid sulfate profiles indicate in situ methane flux from underlying gas hydrate, Geology, 1996, vol. 24, pp. 655–658.

    Article  Google Scholar 

  5. Bristow, T.F. and Grotzinger, J.P., Sulfate availability and the geological record of cold-seep deposits, Geology, 2013, vol. 41, pp. 811–814.

    Article  Google Scholar 

  6. Chumakov, N.M., Pokrovsky, B.G., and Melezhik, V.A., Geological history of the Late Precambrian Patom Supergroup (Central Siberia), Dokl.Earth Sci., 2007, vol. 413A, no. 3, pp. 343–346.

    Article  Google Scholar 

  7. Chumakov, N.M., Semikhatov, M.A., and Sergeev, V.N., Vendian reference section of southern Middle Siberia, Stratigr. Geol. Correl., 2013, vol. 21, no. 4, pp. 369–382.

    Google Scholar 

  8. Cobbold, P.R. and Rodriguez, N., Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (“beef” and “cone-in-cone”), Geofluids, 2007, vol. 7, pp. 313–322.

    Article  Google Scholar 

  9. Cobbold, P.R., Zanella, A., Rodrigues, N., and Loseth, H., Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization, Mar. Petrol Geol., 2013, vol. 43, pp. 1–20.

    Article  Google Scholar 

  10. Cui, H., Kaufman, A.J., Xiao, S., et al., Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China, Chem. Geol., 2017, vol. 450, pp. 59–80.

    Article  Google Scholar 

  11. Cui, H., Kaufman, A.J., Peng, Y., et al., The Neoproterozoic Hüttenberg δ13C anomaly: Genesis and global implications, Precambrian Res., 2018, vol. 313, pp. 242–262.

    Article  Google Scholar 

  12. Flemings, P.B., Liu, X., and Winters, W.J., Critical pressure and multiphase flow in Blake Ridge gas hydrates, Geology, 2003, vol. 31, pp. 1057–1060.

    Article  Google Scholar 

  13. Furuyama, S., Kano, A., Kunimitsu, Y., et al., Diagenetic overprint to a negative carbon isotope anomaly associated with the Gaskiers glaciation of the Ediacaran Doushantuo Formation in South China, Precambrian Res., 2016, vol. 276, pp. 110–122.

    Article  Google Scholar 

  14. Golubkova, E.Yu., Raevskaya, E.G., and Kuznetsov, A.B., Lower Vendian microfossil assemblages of East Siberia: Significance for solving regional stratigraphic problems, Stratigr. Geol. Correl., 2010, vol. 18, no. 4, pp. 353–375.

    Article  Google Scholar 

  15. Grotzinger, J.P., Fike, D.A., and Fischer, W.W., Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history, Nature Geosci., 2011, vol. 4, pp. 285–292.

    Article  Google Scholar 

  16. Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., Neoproterozoic chemostratigraphy, Precambrian Res., 2010, vol. 182, pp. 337–350.

    Article  Google Scholar 

  17. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., Neoproterozoic snowball Earth, Science, 1998, vol. 281, pp. 1342–1346.

    Article  Google Scholar 

  18. Husson, J.M., Maloof, A.C., Schoene, B., et al., Stratigraphic expression of Earth’s deepest d13C excursion in the Wonoka Formation of South Australia, Am. J. Sci., 2015, vol. 315, pp. 1–45.

    Article  Google Scholar 

  19. Jørgensen, B.B. and Kasten, S., Sulfur cycling and methane oxidation, in Marine Geochemistry, Schulz, H.D. and Zabel, M., Eds., Berlin: Springer, 2006, pp. 271–309.

    Google Scholar 

  20. Judd, A.G. and Hovland, M., Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment, Cambridge: Cambr. Univ. Press, 2007.

    Book  Google Scholar 

  21. Kuzmichev, A.B., Bibikova, E.V., and Zhuravlev, D.Z., Neoproterozoic (~ 800 Ma) orogeny in the Tuva-Mongolia Massif (Siberia): island arc—continent collision at the northeast Rodinia margin, Precambrian Res., 2001, vol. 110, pp. 109–126.

    Article  Google Scholar 

  22. Lein, A.Yu., Authigenic carbonate formation in the ocean, Lithol. Miner. Resour., 2004, vol. 39, pp. 1–30.

    Article  Google Scholar 

  23. Li, C., Love, G.D., Lyons, T.W., et al., A stratified redox model for the Ediacaran ocean, Science, 2010, vol. 328, pp. 80–83.

    Article  Google Scholar 

  24. Martens, C.S., Albert, D.B., and Alperin, M.J., Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernforde Bay, German Baltic Sea, Am. J. Sci., 1999, vol. 299, pp. 589–610.

    Article  Google Scholar 

  25. McFadden, K.A., Huang, J., Chu, X., et al., Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation, Proc. Nat. Acad. Sci. U.S.A., 2008, vol. 105, no. 9, pp. 3197–3202.

    Article  Google Scholar 

  26. Meinhold, G., Jensen, S., Hoyberget, M., et al., First record of carbonates with spherulites and cone-in-cone structures from the Precambrian of Arctic Norway, and their palaeoenvironmental significance, Precambrian Res., 2019, vol. 328, pp. 99–110.

    Article  Google Scholar 

  27. Meister, P., McKenzie, J.A., Vasconcelos, C., et al., Dolomite formation in the dynamic deep biosphere: results from the Peru Margin, Sedimentology, 2007, vol. 54, pp. 1007–1032.

    Article  Google Scholar 

  28. Melezhik, V.A., Fallick, A.E., and Pokrovsky, B.G., Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle, Precambrian Res., 2005, vol. 137, pp. 131–165.

    Article  Google Scholar 

  29. Melezhik, V.A., Pokrovsky, B.G., Fallick, A.E., et al., Constraints on 87Sr/86Sr of Late Ediacaran seawater: insight from Siberian high-Sr limestones, J. Geol. Soc., 2009, vol. 166, pp. 183–191.

    Article  Google Scholar 

  30. Meng, Q., Hooker, J., and Cartwright, J., Early overpressuring in organic-rich shales during burial: evidence from fibrous calcite veins in the Lower Jurassic Shales-with-Beef Member in the Wessex Basin, UK, J. Geol. Soc., 2017, vol. 147, pp. 869–882.

    Article  Google Scholar 

  31. Metelkin, D.V., Vernikovskii, V.A., and Kazanskii, A.Yu., Tectonic evolution of the Siberian paleocontinent in the Neoproterozoic–Late Mesozoic: Paleomagnetic record and reconstructions, Geol. Geofiz., 2012, vol. 53, no. 7, pp. 883–899.

    Google Scholar 

  32. Moczydlowska, M. and Nagovitsin, K., Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia, Precambrian Res., 2012, vol. 198-199, pp. 1–24.

    Article  Google Scholar 

  33. Osborne, M.J. and Swarbrick, R.E., Mechanisms for generating overpressure in sedimentary basins: a reevaluation, AAPG Bull., 1997, vol. 81, pp. 1023–1041.

    Google Scholar 

  34. Petrov, P.Yu., Postglacial deposits of the Dal’nyaya Taiga Group: Early Vendian in the Ura Uplift, Siberia. Communication 1. Barakun Formation, Lithol. Miner. Resour., 2018a, no. 5, pp. 417–429.

  35. Petrov, P.Yu., Postglacial deposits of the Dal’nyaya Taiga Group: Early Vendian in the Ura Uplift, Siberia. Communication 2. Ura and Kalancha formations and history of the basin, Lithol. Miner. Resour., 2018b, no. 6, pp. 473–488.

  36. Pierre, C., Blanc-Valleron, M.M., Caquineau, S., et al., Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343–U1345), Deep Sea Res., 2016, part 2, vol. 125/126. pp. 133–144.

    Article  Google Scholar 

  37. Pokrovsky, B.G., Formation conditions of diagenetic carbonates in Cenozoic rocks on Karagin Is. (eastern Kamchatka), Izv. Akad. Nauk SSSR, Ser. Geol., 1980, no. 12, pp. 88–98.

  38. Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Miner. Resour., 2006a, no. 5, pp. 450–474.

  39. Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 2. Nature of carbonates with ultralow and ultrahigh δ13C values, Lithol. Miner. Resour., 2006b, no. 6, pp. 576–587.

  40. Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom Paleobasin, southern Middle Siberia, Lithol. Miner. Resour., 2015, no. 2, pp. 144–169.

  41. Pokrovsky, B.G. and Gladenkov, Yu.B., Conditions of the diagenetic carbonate formation in Cenozoic rocks in western Kamchatka based on C and O isotope data, Vestn. KRAUNTs. Nauki Zemle, 2017, no. 4, pp. 5–12.

  42. Powerman, V., Shatsillo, A., Chumakov, N., et al., Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia, Precambrian Res., 2015, vol. 267, pp. 39–71.

    Article  Google Scholar 

  43. Regnier, P., Dale, A.W., Arndt, S., et al., Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective, Earth Sci. Rev., 2011, vol. 106, pp. 105–130.

    Article  Google Scholar 

  44. Rud’ko, S.V., Petrov, P.Yu., Kuznetsov, A.B., et al., Refined δ13C trend of the Dal’nyaya Taiga Series of the Ura Uplift (Vendian, southern part of Middle Siberia), Dokl. Earth Sci., 2017, vol. 477, no. 5, pp. 1449–1453.

    Article  Google Scholar 

  45. Schrag, D.P., Higgins, J.A., Macdonald, F.A., and Johnston, D.T., Authigenic carbonate and the history of the global carbon cycle, Science, 2013, vol. 339, pp. 540–543.

    Article  Google Scholar 

  46. Sergeev, V.N., Knoll, A.H., and Vorob’eva, N.G., Ediacaran microfossils from the Ura Formation, Baikal–Patom Uplift, Siberia: taxonomy and biostratigraphic significance, Paleontol. J., 2011, vol. 85, no. 5, pp. 987–1011.

    Article  Google Scholar 

  47. Sovetov, J.K., Vendian foreland basin of the Siberian cratonic margin: Paleopangean accretionary phases, Rus. J. Earth Sci., 2002, vol. 4, pp. 363–387.

    Article  Google Scholar 

  48. Sun, X. and Turchyn, A.V., Significant contribution of authigenic carbonate to marine carbon burial, Nat. Geosci., 2014, vol. 7, pp. 201–204.

    Article  Google Scholar 

  49. Tahata, M., Ueno, Y., Ishikawa, T., et al., Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: decoding temperature and environmental changes through the Ediacaran, Gondwana Res., 2013, vol. 23, pp. 333–353.

    Article  Google Scholar 

  50. Talbot, M. and Kelts, K., Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana, Geology, 1986, vol. 14, pp. 912–916.

    Article  Google Scholar 

  51. Vorob’eva, N.G. and Sergeev, V.N., Stellarossica gen. nov. and the Infragruppa Keltmiides infragr. nov.: Extremely large acanthomorph acritarchs from the Vendian of Siberia and the East European Platform, Paleontol. J., 2018, no. 5, pp. 563–574.

  52. Wang, X., Jiang, G., Shi, X., and Xiao, S., Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China, Precambrian Res., 2016, vol. 273, pp. 53–66.

    Article  Google Scholar 

  53. Wehrmann, L.M., Risgaard-Petersen, N., Schrum, H.N., et al., Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323), Chem. Geol., 2011, vol. 284, pp. 251–261.

    Article  Google Scholar 

  54. Xiao, S., Narbonne, G.M., Zhou, C., et al., Towards an Ediacaran Time Scale: Problems, protocols, and prospects, Episodes, 2016, vol. 39, no. 4, pp. 540–555.

    Article  Google Scholar 

  55. Zhou, C., Guan, C., Cui, H., et al., Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2016, vol. 461, pp. 145–155.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-05-00155 and 19-05-00427.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Petrov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, P.Y., Pokrovsky, B.G. Carbon Isotope Evidence of Methanogenesis in Sediments of the Dal’nyaya Taiga Group (Lower Vendian of the Patom Basin, Siberia). Lithol Miner Resour 55, 83–94 (2020). https://doi.org/10.1134/S0024490220020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490220020066

Keywords:

Navigation